A Livšic Theorem for Matrix Cocycles Over Non-uniformly Hyperbolic Systems

Springer Science and Business Media LLC - Tập 31 Số 4 - Trang 1825-1838 - 2019
Backes, Lucas1, Poletti, Mauricio2
1Departamento de Matemática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
2LAGA – Université Paris 13, Villetaneus, France

Tóm tắt

We prove a Livšic-type theorem for Hölder continuous and matrix-valued cocycles over non-uniformly hyperbolic systems. More precisely, we prove that whenever $$(f,\mu )$$ is a non-uniformly hyperbolic system and $$A:M \rightarrow GL(d,\mathbb {R}) $$ is an $$\alpha $$-Hölder continuous map satisfying $$ A(f^{n-1}(p))\ldots A(p)=\text {Id}$$ for every $$p\in \text {Fix}(f^n)$$ and $$n\in \mathbb {N}$$, there exists a measurable map $$P:M\rightarrow GL(d,\mathbb {R})$$ satisfying $$A(x)=P(f(x))P(x)^{-1}$$ for $$\mu $$-almost every $$x\in M$$. Moreover, we prove that whenever the measure $$\mu $$ has local product structure the transfer map P is $$\alpha $$-Hölder continuous in sets with arbitrary large measure.

Tài liệu tham khảo

Avila, A., Kocsard, A., Liu, X.: Livšic theorem for diffeomorphism cocycles, Preprint arXiv:1711.02135 citation_journal_title=Bull. Brazil. Math. Soc.; citation_title=Rigidity of fiber bunched cocycles; citation_author=L Backes; citation_volume=46; citation_publication_date=2015; citation_pages=163-179; citation_doi=10.1007/s00574-015-0089-7; citation_id=CR2 citation_journal_title=Ergod. Theory Dyn. Syst.; citation_title=Cohomology of dominated diffeomorphism-valued cocycles over hyperbolic systems; citation_author=L Backes, A Kocsard; citation_volume=36; citation_publication_date=2016; citation_pages=1703-1722; citation_doi=10.1017/etds.2014.149; citation_id=CR3 citation_title=Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents; citation_publication_date=2007; citation_id=CR4; citation_author=L Barreira; citation_author=Y Pesin; citation_publisher=Cambridge University Press citation_journal_title=Commun. Math. Phys.; citation_title=Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems; citation_author=R Llave; citation_volume=150; citation_publication_date=1992; citation_pages=289-320; citation_doi=10.1007/BF02096662; citation_id=CR5 citation_journal_title=Ann. Math.; citation_title=Canonical perturbation theory of Anosov systems and regularity results for Livšic cohomology equation; citation_author=R Llave, J Marco, R Moriyon; citation_volume=123; citation_publication_date=1986; citation_pages=537-612; citation_doi=10.2307/1971334; citation_id=CR6 citation_journal_title=Ergod. Theory Dyn. Syst.; citation_title=Livšic theorems for non-commutative groups including diffeomorphism groups and results on the existence of conformal structures for Anosov systems; citation_author=R Llave, A Windsor; citation_volume=30; citation_publication_date=2010; citation_pages=1055-1100; citation_doi=10.1017/S014338570900039X; citation_id=CR7 citation_journal_title=Discrete Contin. Dyn. Syst.; citation_title=Smooth dependence on parameters of solutions to cohomology equations over Anosov systems with applications to cohomology equations on diffeomorphism groups; citation_author=R Llave, A Windsor; citation_volume=29; citation_publication_date=2011; citation_pages=1141-1154; citation_id=CR8 citation_journal_title=Ann. Math.; citation_title=Livšic theorem for matrix cocycles; citation_author=B Kalinin; citation_volume=173; citation_publication_date=2011; citation_pages=1025-1042; citation_doi=10.4007/annals.2011.173.2.11; citation_id=CR9 Kalinin, B., Sadovskaya, V.: Lyapunov exponents of cocycles over non-uniformly hyperbolic systems, Preprint https://arxiv.org/pdf/1707.05892.pdf citation_journal_title=Publ. Math. IHES; citation_title=Lyapunov exponents, entropy and periodic points of diffeomorphisms; citation_author=A Katok; citation_volume=51; citation_publication_date=1980; citation_pages=137-173; citation_doi=10.1007/BF02684777; citation_id=CR11 citation_title=Introduction to the modern theory of dynamical systems; citation_publication_date=1995; citation_id=CR12; citation_author=A Katok; citation_author=B Hasselblatt; citation_publisher=Cambridge University Press citation_journal_title=Math. Res. Lett.; citation_title=Cocycle stability for partially hyperbolic systems; citation_author=A Katok, A Kononenko; citation_volume=3; citation_publication_date=1996; citation_pages=191-210; citation_doi=10.4310/MRL.1996.v3.n2.a6; citation_id=CR13 citation_title=Rigidity in Higher Rank Abelian Group Actions. Volume I, Cambridge Tracts in Mathematics; citation_publication_date=2011; citation_id=CR14; citation_author=A Katok; citation_author=V Niţică; citation_publisher=Cambridge University Press citation_journal_title=Comment. Math. Helv.; citation_title=Livšic theorem for low-dimensional diffeomorphism cocycles; citation_author=A Kocsard, R Potrie; citation_volume=91; citation_publication_date=2016; citation_pages=39-64; citation_doi=10.4171/CMH/377; citation_id=CR15 citation_journal_title=Trans Am Math Soc; citation_title=Local product structure for equilibrium states; citation_author=R Leplaideur; citation_volume=352; citation_publication_date=2000; citation_pages=1889-1912; citation_doi=10.1090/S0002-9947-99-02479-4; citation_id=CR16 citation_journal_title=Math. Zametki; citation_title=Homology properties of Y-systems; citation_author=A Livšic; citation_volume=10; citation_publication_date=1971; citation_pages=758-763; citation_id=CR17 citation_journal_title=Math. USSR Izv.; citation_title=Cohomology of dynamical systems; citation_author=A Livšic; citation_volume=6; citation_publication_date=1972; citation_pages=1278-1301; citation_doi=10.1070/IM1972v006n06ABEH001919; citation_id=CR18 citation_journal_title=Duke Math. J.; citation_title=Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher-rank lattices; citation_author=V Niţică, A Török; citation_volume=79; citation_publication_date=1995; citation_pages=751-810; citation_doi=10.1215/S0012-7094-95-07920-4; citation_id=CR19 citation_journal_title=Ergod. Theory Dyn. Syst.; citation_title=Regularity results for the solutions of the Livsic cohomology equation with values in diffeomorphism groups; citation_author=V Niţică, A Török; citation_volume=16; citation_publication_date=1996; citation_pages=325-333; citation_doi=10.1017/S014338570000883X; citation_id=CR20 citation_journal_title=Ergod. Theory Dyn. Syst.; citation_title=Regularity of the transfer map for cohomologous cocycles; citation_author=V Niţică, A Török; citation_volume=18; citation_publication_date=1998; citation_pages=1187-1209; citation_doi=10.1017/S0143385798117480; citation_id=CR21 citation_journal_title=Trans. Moscow Math. Soc.; citation_title=A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems; citation_author=VI Oseledets; citation_volume=19; citation_publication_date=1968; citation_pages=197-231; citation_id=CR22 citation_journal_title=Ergod. Theory Dyn. Syst.; citation_title=The Livšic periodic point theorem for non-abelian cocycles; citation_author=W Parry; citation_volume=19; citation_publication_date=1999; citation_pages=687-701; citation_doi=10.1017/S0143385799146789; citation_id=CR23 citation_journal_title=Discrete Contin. Dyn. Syst.; citation_title=Local Hölder regularity of densities and Livšic theorems for non-uniformly hyperbolic diffeomorphisms; citation_author=M Pollicot; citation_volume=13; citation_publication_date=2005; citation_pages=1247-1256; citation_doi=10.3934/dcds.2005.13.1247; citation_id=CR24 citation_journal_title=Trans. Am. Math. Soc.; citation_title=Livšic theorems for connected Lie groups; citation_author=M Pollicot, C Walkden; citation_volume=353; citation_publication_date=2001; citation_pages=2879-2895; citation_doi=10.1090/S0002-9947-01-02708-8; citation_id=CR25 citation_journal_title=Ergod. Theory Dyn. Syst.; citation_title=Cohomology of fiber bunched cocycles over hyperbolic systems; citation_author=V Sadovskaya; citation_volume=35; citation_publication_date=2015; citation_pages=2669-2688; citation_doi=10.1017/etds.2014.43; citation_id=CR26 citation_journal_title=Ergod. Theory Dyn. Syst.; citation_title=Remarks on Livšic theory for non-abelian cocycles; citation_author=K Schmidt; citation_volume=19; citation_publication_date=1999; citation_pages=703-721; citation_doi=10.1017/S0143385799146790; citation_id=CR27 citation_title=Lectures on Lyapunov Exponents; citation_publication_date=2014; citation_id=CR28; citation_author=M Viana; citation_publisher=Cambridge University Press citation_journal_title=Ann. Math.; citation_title=Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents; citation_author=M Viana; citation_volume=167; citation_publication_date=2008; citation_pages=643-680; citation_doi=10.4007/annals.2008.167.643; citation_id=CR29 citation_journal_title=Astérisque; citation_title=The cohomological equation for partially hyperbolic diffeomorphisms; citation_author=A Wilkinson; citation_volume=358; citation_publication_date=2013; citation_pages=75-165; citation_id=CR30 citation_journal_title=Stoch. Dyn.; citation_title=Livšic theorem for matrix cocycles over nonuniformly hyperbolic systems; citation_author=R Zou, Y Cao; citation_publication_date=2018; citation_doi=10.1142/S0219493719500102; citation_id=CR31