A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations

Mahmoud A. Zaky1
1Department of Applied Mathematics, National Research Centre, Giza, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abd-Elhameed WM, Youssri YH (2017) Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations. Comput Appl Math. https://doi.org/10.1007/s40314-017-0488-z

Abdelkawy MA, Amin AZ, Bhrawy AH, Machado JAT, Lopes AM (2017) Jacobi collocation approximation for solving multi-dimensional volterra integral equations. Int J Nonlinear Sci Numer Simul. https://doi.org/10.1515/ijnsns-2016-0160

Atangana A (2015) On the stability and convergence of the time-fractional variable order telegraph equation. J Comput Phys 293:104–114

Bhrawy AH, Zaky MA (2015) A method based on the Jacobi tau approximation for solving multi-term time–space fractional partial differential equations. J Comput Phys 281:876–895

Bhrawy AH, Zaky MA (2015) Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn 80:101–116

Bhrawy AH, Zaky MA (2016) Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl Math Model 40:832–845

Bhrawy AH, Zaky MA (2017) Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Comput Math Appl 73:1100–1117

Bhrawy AH, Zaky MA (2017) Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations. Nonlinear Dyn 89:1415–1432

Bhrawy AH, Zaky MA (2017) An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations. Appl Numer Math 111:197–218

Bhrawy AH, Zaky MA, Machado JAT (2016) Efficient Legendre spectral tau algorithm for solving two-sided space–time Caputo fractional advection–dispersion equation. J Vib Control 22(8):2053–2068

Bhrawy AH, Zaky MA, Van Gorder RA (2016) A space–time Legendre spectral tau method for the two-sided space–time Caputo fractional diffusion-wave equation. Numer Algorithms 71:151–180

Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, New York

Coimbra CFM (2003) Mechanics with variable-order differential operators. Ann Phys 12:692–703

Dabiri A, Butcher EA (2017) Efficient modified Chebyshev differentiation matrices for fractional differential equations. Commun Nonlinear Sci Numer Simul 50:284–310

Dabiri A, Butcher EA (2017) Stable fractional Chebyshev differentiation matrix for the numerical solution of multi-order fractional differential equations. Nonlinear Dyn 90:185–201

Dabiri A, Butcher EA, Nazari M (2017) Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation. J Sound Vib 388:230–244

Dabiri A, Butcher EA (2016) The spectral parameter estimation method for parameter identification of linear fractional order systems. American control conference (ACC)

Dehghan M, Safarpoor M, Abbaszadeh M (2015) Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J Comput Appl Math 290:174–195

Ertik H, Demirhan D, Şirin H, Büyükklç F (2010) Time fractional development of quantum systems. J Math Phys 51:082102

Ezz-Eldien SS (2016) New quadrature approach based on operational matrix for solving a class of fractional variational problems. J Comput Phys 317:362–381

Ezz-Eldien SS, Hafez RM, Bhrawy AH, Baleanu D, El-Kalaawy A (2017) New numerical approach for fractional variational problems using shifted Legendre orthonormal polynomials. J Optim Theory Appl 174:295–320

Ganti V, Meerschaert M, Foufoula-Georgiou E, Viparelli E, Parker G (2010) Normal and anomalous diffusion of gravel tracer particles in rivers. J Geophys Res Earth Surf 115(F2):1–12

Glöckle WG, Nonnenmacher TF (1995) A fractional calculus approach to self-similar protein dynamics. Biophys J 68:46–53

Jiang H, Liu F, Turner I, Burrage K (2012) Analytical solutions for the multi-term time-space Caputo–Riesz fractional advection–diffusion equations on a finite domain. J Math Anal Appl 389:1117–1127

Jiang H, Liu F, Meerschaert MM, McGough RJ (2013) The foundamental solutions for multi-term modified power law wave equations in a finite domain. Electr J Math Anal Appl 1:1

Jin B, Lazarov R, Liu Y, Zhou Z (2015) The Galerkin finite element method for a multi-term time-fractional diffusion equation. J Comput Phys 281:825–843

Li G, Sun C, Jia X, Du D (2016) Numerical solution to the multi-term time fractional diffusion equation in a finite domain. Numer Math Theory Methods Appl 9:337–357

Li M, Huang C, Jiang F (2017) Galerkin finite element method for higher dimensional multi-term fractional diffusion equation on non-uniform meshes. Appl Anal 96:1269–1284

Liu F, Meerschaert M, McGough R, Zhuang P, Liu Q (2013) Numerical methods for solving the multi-term time-fractional wave-diffusion equations. Fract Calculus Appl Anal 16:9–25

Lorenzo CF, Hartley TT (2002) Variable order and distributed order fractional operators. Nonlinear Dyn 29:57–98

Luchko Y (2009) Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract Calc Appl Anal 12:409–422

Luchko Y (2011) Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J Math Anal Appl 374:538–548

Machado JAT, Kiryakova V (2017) The chronicles of fractional calculus. Fract Calc Appl Anal 20:307–336

Mainardi F, Pagnini G, Gorenflo R (2007) Some aspects of fractional diffusion equations of single and distributed order. Appl Math Comput 187:295–305

Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

Moghaddam BP, Machado JAT (2017) Extended algorithms for approximating variable order fractional derivatives with applications. J Sci Comput 71:1351–1374

Moghaddam BP, Machado JAT (2017) A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels. Fract Calc Appl Anal 20:1023–1042

Moghaddam BP, Machado JAT (2017) A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Comput Math Appl 73:1262–1269

Moghaddam BP, Machado JAT, Behforooz H (2017) An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos Soliton Fract 102:354–360

Mokhtary P (2017) Numerical analysis of an operational Jacobi Tau method for fractional weakly singular integro-differential equations. Appl Numer Math 121:52–67

Nicolau DV, Hancock JF, Burrage K (2007) Sources of anomalous diffusion on cell membranes: a Monte Carlo study. Biophys J 92:1975–1987

Nigmatulin R (1986) The realization of the generalized transfer equation in a medium with fractal geometry. Phys Stat Sol B 133:425–430

Pimenov VG, Hendy AS, De Staelen RH (2017) On a class of non-linear delay distributed order fractional diffusion equations. J Comput Appl Math 318:433–443

Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

Qiao L, Xu D (2017) Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation. Int J Comput Math. https://doi.org/10.1080/00207160.2017.1324150

Ren J, Sun Z (2014) Efficient and stable numerical methods for multi-term time-fractional sub-diffusion equations. East Asian J Appl Math 4:242–266

Salehi R (2017) A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation. Numer Algorithms 74:1145–1168

Scher H, Montroll EW (1975) Anomalous transit-time dispersion in amorphous solids. Phys Rev B 12:2455

Schneider W, Wyss W (1989) Fractional diusion and wave equations. J Math Phys 30:134–144

Schumer R, Benson DA, Meerschaert MM, Baeumer B (2003) Fractal mobile/immobile solute transport. Water Res Res 39:1296

Smit W, De Vries H (1970) Rheological models containing fractional derivatives. Rheol Acta 9:525–534

Song F, Zeng F, Cai W, Chen W, Karniadakis GE (2017) Efficient two-dimensional simulations of the fractional Szabo equation with different time-stepping schemes. Comput Math Appl 73(6):1286–1297

Tang X, Xu H (2016) Fractional pseudospectral integration matrices for solving fractional differential, integral, and integro-differential equations. Commun Nonlinear Sci Numer Simul 30:248–267

Tang X, Shi Y, Xu H (2017) Fractional pseudospectral schemes with equivalence for fractional differential equations. SIAM J Sci Comput 39(3):A966–A982

Tayebi A, Shekari Y, Heydari MH (2017) A meshless method for solving two-dimensional variable-order time fractional advection–diffusion equation. J Comput Phys 340:655–669

Vyawahare VA, Nataraj PSV (2013) Fractional-order modeling of neutron transport in a nuclear reactor. Appl Math Model 37:9747–9767

Wang L-L, Samson MD, Zhao X (2014) A well-conditioned collocation method using a pseudospectral integration matrix. SIAM J Sci Comput 36:A907–A929

Wei L (2017) Stability and convergence of a fully discrete local discontinuous Galerkin method for multi-term time fractional diffusion equations. Numer Algorithms. https://doi.org/10.1007/s11075-017-0277-1

Yaghoobi S, Moghaddam BP, Ivaz K (2017) An efficient cubic spline approximation for variable-order fractional differential equations with time delay. Nonlinear Dyn 87:815–826

Zaky MA, Machado JAT (2017) On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun Nonlinear Sci Numer Simul 52:177–189

Zhaoa Y, Zhang Y, Liub F, Turner I, Tang Y, Anh V (2017) Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. Comput Math Appl 73:1087–1099

Zheng M, Liu F, Anh V, Turner I (2016) A high-order spectral method for the multi-term time-fractional diffusion equations. Appl Math Model 40:4970–4985