A Jacobi Spectral Collocation Method for Solving Fractional Integro-Differential Equations
Tóm tắt
The aim of this paper is to obtain the numerical solutions of fractional Volterra integro-differential equations by the Jacobi spectral collocation method using the Jacobi-Gauss collocation points. We convert the fractional order integro-differential equation into integral equation by fractional order integral, and transfer the integro equations into a system of linear equations by the Gausssian quadrature. We furthermore perform the convergence analysis and prove the spectral accuracy of the proposed method in
$$L^{\infty }$$
norm. Two numerical examples demonstrate the high accuracy and fast convergence of the method at last.
Tài liệu tham khảo
Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi Tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2007)
Carpinteri, A., Chiaia, B., Cornetti, P.: Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Rev. 191, 3–19 (2001)
Chen, Y.P., Tang, T.: Convergence analysis of the Jacobi spectral collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 79, 147–167 (2010)
Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1998)
Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional ordinary differential equations. BIT Numer. Math. 55, 967–985 (2015)
Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)
Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)
Eslahchi, M.R., Dehghan, M., Parvizi, M.: Application of the collocation method for solving nonlinear fractional integro-differential equations. J. Comput. Appl. Math. 257, 105–128 (2014)
Esmaeili, S., Shamsi, M.: A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 16, 3646–3654 (2011)
Ghoreishi, F., Mokhtary, P.: Spectral collocation method for multi-order fractional differential equations. Int. J. Comput. Methods 11, 1350072 (2014)
Ghoreishi, F., Yazdani, S.: An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis. Comput. Math. Appl. 61, 30–43 (2011)
Henry, D.B.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (2006)
Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F., Cattani, C.: Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 19, 37–48 (2014)
Jani, M., Babolian, E., Javadi, S.: Bernstein modal basis: application to the spectral Petrov-Galerkin method for fractional partial differential equations. Math. Methods Appl. Sci. 40, 7663–7672 (2017)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego (2006)
Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)
Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, New York (2015)
Li, C., Zeng, F., Liu, F.: Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, 383–406 (2012)
Ma, X.H., Huang, C.M.: Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Model. 38, 1434–1448 (2014)
Mastroianni, G., Occorsio, D.: Optimal systems of nodes for Lagrange interpolation on bounded intervals: a survey. J. Comput. Appl. Math. 134, 325–341 (2001)
Mokhtary, P.: Reconstruction of exponentially rate of convergence to Legendre collocation solution of a class of fractional integro-differential equations. J. Comput. Appl. Math. 279, 145–158 (2015)
Nevai, P.: Mean convergence of Lagrange interpolation. III. Trans. Am. Math. Soc. 282, 669–698 (1984)
Ragozin, D.L.: Polynomial approximation on compact manifolds and homogeneous spaces. Trans. Am. Math. Soc. 150, 41–53 (1970)
Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997)
Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)
Saadatmandi, A., Dehghan, M.: A Legendre collocation method for fractional integro-differential equations. J. Vib. Control. 17, 2050–2058 (2011)
Saeedi, H., Moghadam, M.M.: Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets. Commun. Nonlinear Sci. Numeri. Simul. 16, 1216–1226 (2011)
Shaw, R.E., Garey, L.E.: A fast method for solving second order boundary value Volterra integro-differential equations. Int. J. Comput. Math. 65, 121–129 (1997)
Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Series in Computational Mathematics. Springer, Berlin (2011)
Wang, L.F., Ma, Y.P., Yang, Y.Q.: Numerical solution of nonlinear Volterra integro-differential equations of fractional order by using adomian decomposition method. Appl. Mech. Mater. 635–637, 1582–1585 (2014)
Wang, Y., Zhu, L.: Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Adv. Differ. Equ. 2017, 27 (2017)
Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 52, 405–423 (2014)
Yang, Y., Chen, Y.P., Huang, Y.Q.: Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations. Acta Mathematica Scientia 34, 673–690 (2014)
Zeng, F., Mao, Z., Karniadakis, G.E.: A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities. SIAM J. Sci. Comput. 39(1), A360–A383 (2017)
Zhu, L., Fan, Q.: Numerical solution of nonlinear fractional-order Volterra integro-differential equations by SCW. Commun. Nonlinear Sci. Numer. Simul. 18, 1203–1213 (2013)