A Hybrid Crow Search and Grey Wolf Optimization Technique for Enhanced Medical Data Classification in Diabetes Diagnosis System

C. Mallika1, S. Selvamuthukumaran2
1Department of Master of Computer Applications, E.G.S. Pillay Engineering College, Nagapattinam, India
2Department of Computer Applications, A.V.C. College of Engineering, Mannampandal, Mayiladuthurai, India

Tóm tắt

Diabetes is an extremely serious hazard to global health and its incidence is increasing vividly. In this paper, we develop an effective system to diagnose diabetes disease using a hybrid optimization-based Support Vector Machine (SVM).The proposed hybrid optimization technique integrates a Crow Search algorithm (CSA) and Binary Grey Wolf Optimizer (BGWO) for exploiting the full potential of SVM in the diabetes diagnosis system. The effectiveness of our proposed hybrid optimization-based SVM (hereafter called CS-BGWO-SVM) approach is carefully studied on the real-world databases such as UCIPima Indian standard dataset and the diabetes type dataset from the Data World repository. To evaluate the CS-BGWO-SVM technique, its performance is related to several state-of-the-arts approaches using SVM with respect to predictive accuracy, Intersection Over-Union (IoU), specificity, sensitivity, and the area under receiver operator characteristic curve (AUC). The outcomes of empirical analysis illustrate that CS-BGWO-SVM can be considered as a more efficient approach with outstanding classification accuracy. Furthermore, we perform the Wilcoxon statistical test to decide whether the proposed cohesive CS-BGWO-SVM approach offers a substantial enhancement in terms of performance measures or not. Consequently, we can conclude that CS-BGWO-SVM is the better diabetes diagnostic model as compared to modern diagnosis methods previously reported in the literature.

Tài liệu tham khảo

Prokosch, H.-U., Ganslandt, T.: Perspectives for medical informatics: Reusing the electronic medical record for clinical research. Methods Inf. Med. 48, 38–44 (2009) Dash, S., Shakyawar, S.K., Sharma, M., et al.: Big data in healthcare: management, analysis and future prospects. J. Big Data (2019). https://doi.org/10.1186/s40537-019-0217-0 Nilashi, M., Ahmadi, N., Samad, S., Shahmoradi, L., Ahmadi, H., Ibrahim, O., Asadi, S., Abdullah, R., Abumalloh, R.A., Yadegaridehkordi, E.: Disease diagnosis using machine learning techniques: A review and classification. J. Soft Comput. Decis. Support Syst. 7(1), 19–30 (2020) Dinesh, M.G., Prabha, D.: Diabetes mellitus prediction system using hybrid KPCA-GA-SVM feature selection techniques. J. Phys. 1767(012001), 1–16 (2021). https://doi.org/10.1088/1742-6596/1767/1/012001 Tama, B.A., Lim, S.: A Comparative performance evaluation of classification algorithms for clinical decision support systems. Mathematics (1814). https://doi.org/10.3390/math8101814 Shaikh, M.S., Hua, C., Jatoi, M.A., Ansari, M.M., Qader, A.A.: Application of grey wolf optimisation algorithm in parameter calculation of overhead transmission line system. IET Sci. Meas. Technol. 15(2), 218–231 (2021). https://doi.org/10.1049/smt2.12023 Meng, Z., Li, G., Wang, X., Sait, S.M., Yıldız, A.R.: A comparative study of metaheuristic algorithms for reliability-based design optimization problems. Arch. Comput. Methods Eng. 28, 1853–1869 (2021). https://doi.org/10.1007/s11831-020-09443-z Negi, G., Kumar, A., Pant, S., Pant, S., Ram, M.: GWO: A review and applications. Int. J. Syst. Assur. Eng. Manag. 12, 1–8 (2021). https://doi.org/10.1007/s13198-020-00995-8 Kao, Y.-T., Zahara, E.: A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl. Soft Comput. 8(2), 849–857 (2008) Tsai, J.-T., Liu, T.-K., Chou, J.-H.: Hybrid Taguchi-genetic algorithm for global numerical optimization. IEEE Trans. Evol. Comput. 8(4), 365–377 (2004) Jitkongchuen, D.: A hybrid differential evolution with grey wolf optimizer for continuous global optimization. Int. Conf. Inf. Technol. Electr. Eng. (ICITEE) (2015). https://doi.org/10.1109/ICITEED.2015.7408911 Nabil, E.: A modified flower pollination algorithm for global optimization. Expert Syst. Appl. 57, 192–203 (2016) Tawhid, M.A., Ali, A.F.: A hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memet. Comput. 9(4), 347–359 (2017) Jayabarathi, T., Raghunathan, T., Adarsh, B., Suganthan, P.N.: Economic dispatch using hybrid grey wolf optimizer. Energy 111, 630–641 (2016) Singh, N., Singh, S.: Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. J. Appl. Math. 2017, 2030489 (2017). https://doi.org/10.1155/2017/2030489 Gaidhane, P.J., Nigam, M.J.: A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems. J. Comput. Sci. 27, 284–302 (2018) Hassanien, A.E., Rizk-Allah, R.M., Elhoseny, M.: A hybrid crow search algorithm based on rough searching scheme for solving engineering optimization problems. J. Ambient Intell. Humaniz. Comput. (2018). https://doi.org/10.1007/s12652-018-0924-y Oh, I.-S., Lee, J.-S., Moon, B.-R.: Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1424–1437 (2004) Talbi, E.-G., Jourdan, L., Garcia-Nieto, J., Alba, E.: Comparison of population based metaheuristics for feature selection: Application to microarray data classification. IEEE/ACS Int. Conf. Comput. Syst. Appl. (2008). https://doi.org/10.1109/AICCSA.2008.4493515 Panwar, D., Tomar, P., Singh, V.: Hybridization of Cuckoo-ACO algorithm for test case prioritization. J. Stat. Manag. Syst. 21(4), 539–546 (2018). https://doi.org/10.1080/09720510.2018.1466962 Zhao, F., Yao, Z., Luan, J., Song, X.: A novel fused optimization algorithm of genetic algorithm and ant colony optimization. Math. Probl. Eng. (2016). https://doi.org/10.1155/2016/2167413 Babatunde, R.S., Olabiyisi, S.O., Omidiora, E.O.: Feature dimensionality reduction using a dual level metaheuristic algorithm. Optimization 7(1), 49–52 (2014) Mafarja, M.M., Mirjalili, S.: Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260, 302–312 (2017) Kazakov, P.: Extension for multi-objective genetic algorithms based on the dynamic population size model. J. Phys. 1661, 012046 (2020). https://doi.org/10.1088/1742-6596/1661/1/012046 Meraihi, Y., Gabis, A.B., Mirjalili, S., Ramdane-Cherif, A.: Grasshopper optimization algorithm: theory variants, and applications. IEEE Access 9, 50001–50024 (2021). https://doi.org/10.1109/ACCESS.2021.3067597 Belmon, A.P., Auxillia, J.: An adaptive technique based blood glucose control in type-1 diabetes mellitus patients. Int. J. Numer. Method Biomed. Eng. 36, e3371 (2020). https://doi.org/10.1002/cnm.3371 Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013) Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014) Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995) Scholkopf, B., Burges, C.J.C., Smola, A.J.: Advances in Kernel Methods: Support Vector Learning. The MIT Press, Cambridge (1998) Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000) Mirjalili, S., Mirjalili, M.S., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014) Muangkote, N., Sunat, K., Chiewchanwattana, S.: An improved grey wolf optimizer for training q-Gaussian radial basis functional link nets. Int. Comput. Sci. Eng. Conf. (ICSEC) 2014, 209–214 (2014). https://doi.org/10.1109/ICSEC.2014.6978196 Munro, C., Escobedo, R., Spector, L., Coppinger, R.P.: Wolf-pack (Canislupus) hunting strategies emerge from simple rules in computational simulation. Behav. Process. 88, 192–197 (2011) Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problem: crow search algorithm. Comput. Struct. 169, 1–12 (2016) Prior, H., Schwarz, A., Güntürkün, O.: Mirror-induced behavior in the magpie (picapica): evidence of self-recognition. PLoSBiol 6(8), e202 (2008) Clayton, N., Emery, N.: Corvide cognition. Curr. Biol. 15, R80–R81 (2005) Yang, X.S.: Metaheuristic optimization. Scholarpedia 6, 11472 (2011) Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. Int. Jt. Conf. Artif. Intell. 2, 1137–1143 (1995) Alsewari, A.R.A., Zamli, K.Z.: ‘Design and implementation of a harmony-search-based variable-strength t-way testing strategy with constraints support.’ Inf. Softw. Technol. 54(6), 553–568 (2012) Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002) Xuehao, Y., Yan, D.H., Jiabao, Y., Chao, L.: A novel SVM parameter tuning method based on advanced whale optimization algorithm. J. Phys. 1237, 022140 (2019) Chaabane, S.B., Kharbech, S., Belazi, A., Bouallegue, A.: Improved whale optimization algorithm for SVM model selection: Application in medical diagnosis. Int. Conf. Softw. Telecommun. Comput. Netw. (SoftCOM) 5, 5 (2020). https://doi.org/10.23919/SoftCOM50211.2020.9238265 Anton, N., Dragoi, E.N., Tarcoveanu, F., Ciuntu, R.E., Lisa, C., Curteanu, S., Doroftei, B., Ciuntu, B.M., Chiseliţă, D., Bogdănici, C.M.: Assessing changes in diabetic retinopathy caused by diabetes mellitus and glaucoma using support vector machines in combination with differential evolution algorithm. Appl. Sci. 11(9), 3944 (2021). https://doi.org/10.3390/app11093944 Joshi, H., Arora, S.: ‘Enhanced grey wolf optimization algorithm for global optimization.’ Fundam. Inform. 153(3), 235–264 (2017) Qais, M.H., Hasanien, H.M., Alghuwainem, S.: ‘Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems.’ Appl. Soft Comput. 69, 504–515 (2018) Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011) UCI repository of bioinformatics Databases, Website: http://www.ics.uci.edu/~mlearn/MLRepository.html Data World datasets repository. https://data.world/. Accessed 2018 Pardo, M., Sberveglieri, G.: Classification of electronic nose data with support vector machines. Sens. Actuators B Chem. 107, 730–737 (2005) Hao, S., Zhou, X., Song, H.: A new method for noise data detection based on DBSCAN and SVDD. In: Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, 8–12 June 2015; pp. 784–789 Ijaz, M.F., Alfian, G., Syafrudin, M., Rhee, J.: Hybrid prediction model for type 2 diabetes and hypertension using DBSCAN-based outlier detection, synthetic minority over sampling technique (SMOTE), and random forest. Appl. Sci. 8(8), 1325 (2018) Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006) Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)