A Hollow and Compressible 3D Photothermal Evaporator for Highly Efficient Solar Steam Generation without Energy Loss

Solar RRL - Tập 5 Số 5 - 2021
Ting Gao1, Xuan Wu1, Yida Wang1, Gary Owens1, Haolan Xu1
1Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia

Tóm tắt

Solar steam generation offers a sustainable strategy to mitigate global clean water scarcity. To this end, 3D photothermal evaporators have attracted increasing research interest since they can significantly improve both evaporation rate and energy efficiency. However, compared to the 2D evaporators, the 3D ones consume more raw materials and occupy more storage space, which limits their applications for practical portable solar steam generation. To address this issue, a 3D hollow and compressible photothermal evaporator is designed and fabricated which can be compressed to less than one third of its original volume, thus enabling easier transport and storage. Moreover, under 1.0 sun illumination, all evaporation surfaces of this 3D evaporator are lower in temperatures than the surrounding environment, thus providing the unique advantage of zero energy loss to the environment during solar evaporation. Due to the all‐cold evaporation surfaces, during solar evaporation, the evaporator is able to harvest massive energy from both the surrounding air and bulk water, delivering an extremely high evaporation rate of up to 7.6 kg m−2 h−1 under 1.0 sun irradiation. Furthermore, seawater desalination tests demonstrate that the device has great potential for portable solar thermal desalination by delivering clean water with a salinity well below 50 ppb.

Từ khóa


Tài liệu tham khảo

https://www.who.int/water_sanitation_health/monitoring/coverage/jmp-update-2017-graphics/en/(accessed: January 2021).

Alcamo J., 1997, Global change and global scenarios of water use and availability: An application of WaterGAP1.0, 1720

10.1021/acsenergylett.9b02611

10.1016/j.ensm.2018.10.006

10.1002/advs.201900883

10.1002/aenm.201900310

10.1039/C8EE01146J

10.1039/C7MH01064H

10.1039/C8EN00156A

10.1038/s41560-018-0260-7

10.1093/nsr/nwz030

10.1016/j.nanoen.2020.105102

10.1002/aenm.202000925

10.1126/sciadv.aaw7013

10.1016/j.joule.2018.12.023

10.1002/solr.201900241

10.1016/j.mtener.2019.02.001

10.1038/s41578-020-0182-4

10.1039/D0TA08539A

10.1016/j.nanoen.2020.104857

10.1016/j.nanoen.2020.104650

10.1002/adfm.201903255

10.1016/j.nanoen.2020.105477

10.1016/j.nanoen.2020.105269

10.1016/j.scib.2020.04.036

10.1016/j.joule.2020.02.014

10.1093/nsr/nwx051

10.1038/s41467-020-15116-z

10.1039/D0TA09773J

10.1002/solr.202000341

10.1016/j.susmat.2020.e00182

10.1038/s41565-018-0097-z

10.1002/adma.201604031

10.1002/adma.201601819

10.1002/adma.201606762

10.1021/acssuschemeng.9b06169

10.1016/j.susmat.2020.e00180

10.1021/acssuschemeng.8b05830

10.1002/gch2.201700094

10.1002/adma.201701756

10.1073/pnas.1613031113

10.1039/C6TA09810J

10.1021/acsnano.8b07526

10.1016/j.solmat.2020.110910

10.1016/j.matt.2019.06.010

10.1002/adma.201500135

10.1038/nphoton.2016.75

10.1038/nenergy.2016.126

10.1038/ncomms10103

10.1002/aenm.201800711

10.1002/aenm.201701028

10.1039/C8TA03280G

10.1002/smll.201902070

10.1002/aenm.201702884

10.1002/adma.201502362

10.1002/adsu.201700046

10.1016/j.nanoen.2018.12.008

10.1002/adma.201603730

10.1007/s42864-020-00062-6

10.1007/s42765-020-00029-9

10.1021/acsnano.7b08196

10.1021/acsnano.7b01965

10.1002/adma.201501832

10.1021/acs.chemmater.7b01280

10.1039/C8TA05412F

10.1039/c1ee01532j

10.1038/ncomms5449

10.1016/j.mtener.2018.04.004

10.1016/j.joule.2018.04.004

10.1016/j.joule.2018.03.013

10.1002/advs.201800222

10.1021/acsami.0c01707

10.1039/D0TA03799K

10.1016/j.scib.2019.08.022

10.1002/solr.202000232

10.1002/advs.202002501

10.1038/s41467-019-10817-6

10.1039/B917103G

10.1016/j.joule.2019.06.009