Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một điện xúc tác từ khung hữu cơ kim loại đồng BTC hiệu quả và ổn định cho phản ứng oxy hóa methanol trong ứng dụng DMFC
Tóm tắt
Trong công trình hiện tại, sự phát triển của điện xúc tác dựa trên khung hữu cơ kim loại đồng benzenetricarboxylic acid (Cu-BTC MOF) và ảnh hưởng của graphene oxide đến hoạt động xúc tác của khung hữu cơ kim loại đã được nghiên cứu cho phản ứng oxy hóa methanol. Cu-MOF được chuẩn bị bằng phương pháp thủy nhiệt đơn giản và các mảnh graphene oxide được tổng hợp thông qua phương pháp Hummer cải tiến. Các nghiên cứu về hình thái bề mặt của chất xúc tác được phân tích thông qua kỹ thuật hiển vi điện tử quét, cho thấy cấu trúc hình lập phương của các tinh thể, trong khi độ tinh thể và các nhóm chức có mặt được xác định thông qua phương pháp X-quang tán xạ và quang phổ FTIR tương ứng. Các nghiên cứu điện hóa đã được thực hiện bằng cách sử dụng kỹ thuật quét vòng cyclic voltammetry, quang phổ điện hóa trở kháng và chronoamperometry. Trong tất cả các loạt chất xúc tác, 5 wt% GO/Cu-MOF thể hiện mật độ dòng điện cao nhất là 120 mA/cm2 ở tốc độ quét 50 mV/s tại điện áp 0.9 V.
Từ khóa
#khung hữu cơ kim loại #điện xúc tác #đồng benzenetricarboxylic acid #graphene oxide #oxy hóa methanol #DMFCTài liệu tham khảo
Ata MS, Poon R, Syed AM, Milne J, Zhitomirsky I (2018) New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes. Carbon 130:584–598
Gong L, Yang Z, Li K, Xing W, Liu C, Ge J (2018) Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. J Energy Chem 27:1618–1628
Zhu J, Su Y, Cheng F, Chen J (2007) Improving the performance of PtRu/C catalysts for methanol oxidation by sensitization and activation treatment. J Power Sources 166:331–336
Nouralishahi A, Mortazavi Y, Khodadadi AA, Choolaei M, Thompson LT, Horri BA (2019) Characteristics and performance of urea modified Pt-MWCNTs for electro-oxidation of methanol. Appl Surf Sci 467–468:335–344
Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110
Bai L (2018) Synthesis of PtRu/Ru heterostructure for efficient methanol electrooxidation: the role of extra Ru. Appl Surf Sci 433:279–284
Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem Interfacial Electrochem 60:267–273
Štrbac S, Maksić A, Rakočević Z (2018) Methanol oxidation on Ru/Pd(poly) in alkaline solution. J Electroanal Chem 823:161–170
Li J, Luo Z, Zuo Y, Liu J, Zhang T, Tang P et al (2018) NiSn bimetallic nanoparticles as stable electrocatalysts for methanol oxidation reaction. Appl Catal B 234:10–18
Sunitha M, Durgadevi N, Sathish A, Ramachandran T (2018) Performance evaluation of nickel as anode catalyst for DMFC in acidic and alkaline medium. J Fuel Chem Technol 46:592–599
Szunerits S, Boukherroub R (2018) Graphene-based nanomaterials in innovative electrochemistry. Curr Opin Electrochem 10:24–30
Pumera M (2013) Electrochemistry of graphene, graphene oxide and other graphenoids: review. Electrochem Commun 36:14–18
Daşdelen Z, Yıldız Y, Eriş S, Şen F (2017) Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Appl Catal B 219:511–516
Chang G, Cai Z, Jia H, Zhang Z, Liu X, Liu Z et al (2018) High electrocatalytic performance of a graphene-supported PtAu nanoalloy for methanol oxidation. Int J Hydrog Energy 43:12803–12810
Ren Y, Chia GH, Gao Z (2013) Metal–organic frameworks in fuel cell technologies. Nano Today 8:577–597
Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14
Du W, Bai Y-L, Xu J, Zhao H, Zhang L, Li X et al (2018) Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J Power Sources 402:281–295
Zhang T, Jin Y, Shi Y, Li M, Li J, Duan C (2019) Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coord Chem Rev 380:201–229
Raja DS, Lin HW, Lu SY (2019) Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy 57:1–13
Mandegarzad S, Raoof JB, Hosseini SR, Ojani R (2018) MOF-derived Cu-Pd/nanoporous carbon composite as an efficient catalyst for hydrogen evolution reaction: a comparison between hydrothermal and electrochemical synthesis. Appl Surf Sci 436:451–459
Mehek R, Iqbal N, Noor T, Nasir H, Mehmood Y, Ahmed S (2017) Novel Co-MOF/graphene oxide electrocatalyst for methanol oxidation. Electrochim Acta 255:195–204
Lin S, Song Z, Che G, Ren A, Li P, Liu C et al (2014) Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution. Microporous Mesoporous Mater 193:27–34
Mu X, Chen Y, Lester E, Wu T (2018) Optimized synthesis of nano-scale high quality HKUST-1 under mild conditions and its application in CO2 capture. Microporous Mesoporous Mater 270:249–257
Shen J, Wang X, Zhang L, Yang Z, Yang W, Tian Z et al (2018) Size-selective adsorption of methyl orange using a novel nano-composite by encapsulating HKUST-1 in hyper-crosslinked polystyrene networks. J Clean Prod 184:949–958
Zhao X, Chen L, Guo Y, Ma X, Li Z, Ying W et al (2019) Porous cellulose nanofiber stringed HKUST-1 polyhedron membrane for air purification. Appl Mater Today 14:96–101
Vulcu A, Olenic L, Blanita G, Berghian-Grosan C (2016) The electrochemical behavior of a metal-organic framework modified gold electrode for methanol oxidation. Electrochim Acta 219:630–637
Haneef M, Saleem H, Habib A (2017) Use of graphene nanosheets and barium titanate as fillers in PMMA for dielectric applications. Synth Met 223:101–106
Chang W-T, Chao Y-H, Li C-W, Lin K-L, Wang J-J, Kumar SR et al (2019) Graphene oxide synthesis using microwave-assisted vs. modified Hummer’s methods: efficient fillers for improved ionic conductivity and suppressed methanol permeability in alkaline methanol fuel cell electrolytes. J Power Sources 414:86–95
Hromadka J, Tokay B, Correia R, Morgan SP, Korposh S (2018) Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1. Sens Actuators B Chem 255:2483–2494
Mustafa D, Breynaert E, Bajpe SR, Martens JA, Kirschhock CE (2011) Stability improvement of Cu3(BTC)2 metal–organic frameworks under steaming conditions by encapsulation of a Keggin polyoxometalate. Chem Commun 47:8037–8039
Kole M, Dey T (2013) Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J Appl Phys 113:084307
Hidayah N, Liu WW, Lai CW, Noriman N, Khe CS, Hashim U et al. (2017) Comparison on graphite, graphene oxide and reduced graphene oxide: synthesis and characterization. In: AIP Conference Proceedings. p 150002
Feng H, Cheng R, Zhao X, Duan X, Li J (2013) A low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539
Srimuk P, Luanwuthi S, Krittayavathananon A, Sawangphruk M (2015) Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper. Electrochim Acta 157:69–77
Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924
Zhang X, Jiang ZH, Yao ZP, Song Y, Wu ZD (2009) Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros Sci 51:581–587
Shahid MM, Pandikumar A, Golsheikh AM, Huang NM, Lim HN (2014) Enhanced electrocatalytic performance of cobalt oxide nanocubes incorporating reduced graphene oxide as a modified platinum electrode for methanol oxidation. RSC Adv 4:62793–62801
Hassan H, Rahim MA, Khalil M, Mohammed R (2014) Ni modified MCM-41 as a catalyst for direct methanol fuel cells. Int J Electrochem Sci 9:760–777
Cordeiro C, De Vries M, Cremers T, Westerink B (2016) The role of surface availability in membrane-induced selectivity for amperometric enzyme-based biosensors. Sens Actuators B Chem 223:679–688
Mahapatra SS, Datta J (2011) Characterization of Pt-Pd/C electrocatalyst for methanol oxidation in alkaline medium. Int J Electrochem. https://doi.org/10.4061/2011/563495
Ghouri ZK, Barakat NA, Kim HY, Park M, Khalil KA, El-Newehy MH et al (2016) Nano-engineered ZnO/CeO2 dots@ CNFs for fuel cell application. Arab J Chem 9:219–228
Santoro C, Serov A, Gokhale R, Rojas-Carbonell S, Stariha L, Gordon J et al (2017) A family of Fe-NC oxygen reduction electrocatalysts for microbial fuel cell (MFC) application: relationships between surface chemistry and performances. Appl Catal B 205:24–33
Vetter KJ (2013) Electrochemical kinetics: theoretical aspects. Elsevier, Saint Louis
Tapan NA, Prakash J (2005) Determination of the methanol decomposition mechanism on a polycrystalline platinum electrode. Turk J Eng Environ Sci 29:95–104
Wang W, Li Y, Wang H (2013) Tin oxide nanoparticle-modified commercial PtRu catalyst for methanol oxidation. Micro Nano Lett 8:23–26
Behmenyar G, Akın AN (2014) Investigation of carbon supported Pd–Cu nanoparticles as anode catalysts for direct borohydride fuel cell. J Power Sources 249:239–246
Huang W, Wang H, Zhou J, Wang J, Duchesne PN, Muir D et al (2015) Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nat Commun 6:10035