A High Performance 2-Hydroxynaphthalene Acylhydrazone Fluorescent Chemosensor for Detection of Al3+ Ions Through ESIPT and PET Signalling Mechanism
Tóm tắt
Acylhydrazone based chemosensors, with encouraging optical responses, have been widely developed for anticancer and antiviral activities. Excited state intramolecular proton transfer and photoinduced electron transfer (PET) play an indispensable role in the study of excited state dynamics of fluorescent sensors. In this paper, 3-hydroxy-N′-((2-hydroxynaphthalen-1-yl)methylene)-2-naphthohydrazide (NANH) chemosensor was studied using density functional theory (DFT) and time-dependent DFT. Our theoretical results show that the hydroxyl group of NANH forms an intra-molecular hydrogen bond with the adjacent imine nitrogen. And in the process of light excitation, the PET process is triggered. In addition, the acylhydrazone derivatives have a strong donor position, and when they are coordinated with Al3+ ions, the fluorescence is enhanced by blocking the PET process. In this work, the geometric structure were optimized, the charge transfer process was studied by hole-electron analysis. The frontier molecular orbitals show that the NANH-Al-b is better stabilized than that of NANH1.
Tài liệu tham khảo
R. E. Litov, V. S. Sickles, G. M. Chan, M. A. Springer, and A. Cordano (1989). Pediatrics. 84, 1105–1107.
M. Kawasaki, S. Nomura, H. Itami, Y. Kondo, T. Kondo, N. Ito, and C. Akutsu (1962). Met. Ceram. Other Mater. 26, 438–441.
T.J. Reece (2007). Dissertations &Theses-Gradworks.
R. A. Yokel, C. L. Hicks, and R. L. Florence (2008). Food Chem. Toxico. 46, 2261–2266.
M. Shyamal, P. Mazumdar, S. Maity, G. P. Sahoo, G. Salgado-Morán, and A. Misra (2016). J. Phys. Chem. A 120, 210–220.
J. C. Qin, X. Y. Cheng, R. Fang, M. F. Wang, Z. Y. Yang, T. R. Li, and Y. Li (2016). Acta A. Mol. Biomol Spectrosc. 152, 352–357.
D. R. Crapper, S. S. Krishnan, and A. J. Dalton (1973). Science 180, 511–513.
E. House, J. Collingwood, A. Khan, O. Korchazkina, G. Berthon, and C. Exley (2004). J. Alzheimers Dis. 6, 291–301.
N. E. W. Alstad, B. M. Kjelsberg, L. A. Vøllestad, E. Lydersen, and A. B. S. Poléo (2005). Environ. Pollut. 133, 333–342.
J. Barceló and C. Poschenrieder (2002). Environ. Exp. Bot. 48, 75–92.
R. W. Sinkeldam, N. J. Greco, and Y. Tor (2010). Chem. Rev. 110, 2579.
Z. Tang, H. W. Wei, and P. W. Zhou (2020). J. Mol. Liq. 301, 112415.
J. Wu, W. Liu, J. Ge, H. Zhang, and P. Wang (2011). Chem. Soc. Rev. 40, 3483.
Z. Tang, T. X. Bai, and P. W. Zhou (2020). J Phys Chem A. 124, 6920–6927.
J. F. Zhao and B. Jin (2021). J. Mol. Liq. 326, 115309.
Z. Tang and P. W. Zhou (2020). J. Phys Chem B. 124, 3400–3407.
K. Soroka, R. S. Vithanage, D. A. Phillips, B. Walker, and P. K. Dasgupta (1987). Anal. Chem. 59, 629–636.
Y. Zhao, Z. Lin, H. Liao, C. Duan, and Q. Meng (2006). Inorg. Chem. Commun. 9, 966–968.
K. K. Upadhyay and A. Kumar (2010). Org. Biomol. Chem. 8, 4892.
A. Sahana, A. Banerjee, S. Lohar, A. Banik, S. K. Mukhopadhyay, D. A. Safin, M. G. Babashkina, M. Bolte, Y. Garcia, and D. Das (2013). Dalton Trans. 42, 13311.
Y. A. Shi, X. Y. Zhao, C. Wang, Y. Wang, S. Zhang, P. Li, X. Feng, B. Jin, M. H. Yuan, S. Cui, Y. Sun, B. Zhang, S. Q. Sun, X. N. Jin, H. Y. Wang, and G. J. Zhao (2020). Chem. Asian J. 15, 1478–1483.
Z. B. Wu, M. Q. Wang, Y. R. Guo, F. X. Ji, C. Wang, S. P. Wang, J. G. Zhang, Y. Wang, S. Zhang, B. Jin, and G. J. Zhao (2021). J. Phys. Chem. B. 125, 9572–9578.
S. Botros, R. Abdel-Kader, M. El-Ghannam, A. El-Ray, L. Saleh, and M. Mahmoud (2007). Int. J. Trop. Med. 2, 101–106.
L. Fan, X. H. Jiang, B. D. Wang, and Z. Y. Yang (2014). Sens. Actu. B Chem. 205, 249–254.
J. F. Wang, Y. B. Li, and N. G. Patel (2014). J. Chem. Commun. 50, 12258–12261.
S. Sinha, B. Chowdhury, and P. Ghosh (2016). Inorg. Chem. 55, 9212–9220.
L. Liu, B. Q. Sun, R. Ding, Y. Y. Mao, and M. Di (2020). J. Lumin. 228, 117657.
A. Saravanana, S. Shyamsivappan, N. K. Kalagatur, T. Suresh, N. Maroli, N. Bhuvaneshc, P. Kolandaiveld, and P. S. Mohana (2020). Spectrochim. Acta Part A. 241, 118684.
A. D. Becke (1988). Phys. Rev. A. 38, 3098–3100.
B. Miehlich, A. Savin, H. Stoll, and H. Preuss (1988). Chem. Phys. Lett. 157, 200–206.
A. Schafer, H. Horn, and R. Ahlrichs (1992). J. Chem. Phys. 97, 2571–2577.
A. Schafer, C. Huber, and R. Ahlrichs (1994). J. Chem. Phys. 100, 5829–5835.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision A.03 (Gaussian Inc, Wallingford CT, 2016).
E. Cancès, B. Mennucci, and J. Tomasi (1997). J. Chem. Phys. 107, 3032–3041.
T. Lu and F. W. Chen (2012). J. Comput. Chem. 33, 580–592.
E. R. Johnson, S. Keinan, P. M. Sanchez, J. C. Garcia, A. J. Cohen, and W. T. Yang (2010). J. Am. Chem. Soc. 132, 6498–6506.
I. Mayer (1983). Chem. Phys. Lett. 97, 270–274.