A Hermite interpolatory subdivision scheme constructed from quadratic rational Bernstein–Bezier spline

Mathematics and Computers in Simulation - Tập 187 - Trang 433-448 - 2021
Mahendra Kumar Jena1
1Department of Mathematics, Veer Surendra Sai University of Technology, Odisha, Burla 768018, Sambalpur, Odisha, India

Tài liệu tham khảo

Albrecht, 2012, Convexity preserving interpolatory subdivision with conic precision, Appl. Math. Comput., 219, 4049, 10.1016/j.amc.2012.10.048 Apostol, 2002 Cavaretta, 1991, Stationary subdivision, Memoirs Amer. Math. Soc., 93, 10.1090/memo/0453 Conti, 2016, Factorization of Hermite subdivision operators preserving exponentials and polynomials, Adv. Comput. Math., 42, 1055, 10.1007/s10444-016-9453-4 Conti, 2017, Convergence of level-dependent Hermite subdivision schemes, Appl. Numer. Math., 116, 10.1016/j.apnum.2017.02.011 Conti, 2019, An algebraic approach to polynomial reproduction of Hermite subdivision schemes, J. Comput. Appl. Math., 349, 302, 10.1016/j.cam.2018.08.009 Conti, 2014, Dual Hermite subdivision schemes of de Rham-type, BIT, 54, 955, 10.1007/s10543-014-0495-z Conti, 2015, Ellipse-preserving Hermite interpolation and subdivision, J. Math. Anal. Appl., 426, 211, 10.1016/j.jmaa.2015.01.017 Cotronei, 2019, Level-dependent interpolatory Hermite subdivision schemes and wavelets, Constr. Approx., 50, 341, 10.1007/s00365-018-9444-4 Dubuc, 2006, Scalar and hemite subdivision schemes, Appl. Comput. Harmon. Anal., 21, 376, 10.1016/j.acha.2006.04.007 Dubuc, 2001, A 4-point Hermite subdivision scheme Dubuc, 2009, Hermite subdivision schemes and Taylor polynomials, Constr. Approx., 29, 219, 10.1007/s00365-008-9011-5 Dyn, 1999, Analysis of Hermite-interpolatory subdivision schemes, 105 Floater, 2013, Analysis of Hermite subdivision using piecewise polynomials, BIT Numer. Math., 53, 397 Han, 2005, Noninterpolatory Hermite subdivision schemes, Math. Comp., 74, 1345, 10.1090/S0025-5718-04-01704-1 Hüning, 2020, Polynomial reproduction of Hermite subdivision schemes of any order, Math. Comput. Simulation, 176, 195, 10.1016/j.matcom.2019.12.010 Hussain, 2011, Shape preserving rational cubic spline for positive and convex data, Egypt. Inform. J., 12, 231, 10.1016/j.eij.2011.10.002 Jena, 2001, A subdivision algorithm for generalized Bernstein bezier curves, Comput. Aided Geom. Design, 18, 673, 10.1016/S0167-8396(01)00061-9 Jena, 2002, A subdivision algorithm for trigonometric spline curves, Comput. Aided Geom. Design, 19, 71, 10.1016/S0167-8396(01)00090-5 Jena, 2003, A non-stationary subdivision scheme for curve interpolation, ANZIAM J., E(44), E216 Jena, 2003, A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes, Comput. Aided Geom. Design, 20, 61, 10.1016/S0167-8396(03)00008-6 Jeong, 2017, Construction of Hermite subdivision schemes reproducing polynomials, J. Math. Anal. Appl., 451, 565, 10.1016/j.jmaa.2017.02.014 Jeong, 2019, Analysis of non-stationary hermite subdivision schemes reproducing exponential polynomials, J. Comput. Appl. Math., 349, 452, 10.1016/j.cam.2018.07.050 Kuijt, 1998 Kuijt, 2002, Shape preserving interpolatory subdivision schemes for nonuniform data, J. Approx. Thoery, 114, 1, 10.1006/jath.2001.3628 Merrien, 1992, A family of Hermite interpolants by bisection algorithms, Numer. Alg., 2, 187, 10.1007/BF02145385 Merrien, 2012, From Hermite to stationary subdivision schemes in one or several variables, Adv. Comput. Math., 36, 547, 10.1007/s10444-011-9190-7 Merrien, 2017, Extended Hermite subdivision schemes, J. Comput. Appl. Math., 20, 343, 10.1016/j.cam.2016.12.002 Merrien, 2019, Generalized taylor operators, polynomial chains, and Hermite subdivision schemes, Numer. Math., 142, 167, 10.1007/s00211-018-0996-9 Moosmüller, 2019, A note on spectral properties of Hermite subdivision operators, Comput. Aided Geom. Design, 69, 1, 10.1016/j.cagd.2018.12.002 Moosmüller, 2019, Increasing the smoothness of vector and Hermite subdivision schemes, IMA J. Numer. Anal., 39, 579, 10.1093/imanum/dry010 Moosmüller, 2020, Stirling numbers and gregory coefficients for the factorization of Hermite subdivision operators, IMA J. Numer. Anal., draa047, 10.1093/imanum/draa047 Sarfraz, 2002, Visualization of positive and convex data by a rational cubic spline interpolation, Inform. Sci., 146, 239, 10.1016/S0020-0255(02)00209-8 Schumaker, 1983, On shape preserving quadratic spline interpolation, SIAM J. Numer. Anal., 20, 854, 10.1137/0720057 V. Uhlmann, R. Delgado-Gonzalo, C. Conti, L. Romani, M. Unser, Exponential Hermite splines for the analysis of biomedical images, in: Proceedings of the Thirty-Ninth IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), 2014, pp. 1650–1653.