A Hermite interpolatory subdivision scheme constructed from quadratic rational Bernstein–Bezier spline
Tài liệu tham khảo
Albrecht, 2012, Convexity preserving interpolatory subdivision with conic precision, Appl. Math. Comput., 219, 4049, 10.1016/j.amc.2012.10.048
Apostol, 2002
Cavaretta, 1991, Stationary subdivision, Memoirs Amer. Math. Soc., 93, 10.1090/memo/0453
Conti, 2016, Factorization of Hermite subdivision operators preserving exponentials and polynomials, Adv. Comput. Math., 42, 1055, 10.1007/s10444-016-9453-4
Conti, 2017, Convergence of level-dependent Hermite subdivision schemes, Appl. Numer. Math., 116, 10.1016/j.apnum.2017.02.011
Conti, 2019, An algebraic approach to polynomial reproduction of Hermite subdivision schemes, J. Comput. Appl. Math., 349, 302, 10.1016/j.cam.2018.08.009
Conti, 2014, Dual Hermite subdivision schemes of de Rham-type, BIT, 54, 955, 10.1007/s10543-014-0495-z
Conti, 2015, Ellipse-preserving Hermite interpolation and subdivision, J. Math. Anal. Appl., 426, 211, 10.1016/j.jmaa.2015.01.017
Cotronei, 2019, Level-dependent interpolatory Hermite subdivision schemes and wavelets, Constr. Approx., 50, 341, 10.1007/s00365-018-9444-4
Dubuc, 2006, Scalar and hemite subdivision schemes, Appl. Comput. Harmon. Anal., 21, 376, 10.1016/j.acha.2006.04.007
Dubuc, 2001, A 4-point Hermite subdivision scheme
Dubuc, 2009, Hermite subdivision schemes and Taylor polynomials, Constr. Approx., 29, 219, 10.1007/s00365-008-9011-5
Dyn, 1999, Analysis of Hermite-interpolatory subdivision schemes, 105
Floater, 2013, Analysis of Hermite subdivision using piecewise polynomials, BIT Numer. Math., 53, 397
Han, 2005, Noninterpolatory Hermite subdivision schemes, Math. Comp., 74, 1345, 10.1090/S0025-5718-04-01704-1
Hüning, 2020, Polynomial reproduction of Hermite subdivision schemes of any order, Math. Comput. Simulation, 176, 195, 10.1016/j.matcom.2019.12.010
Hussain, 2011, Shape preserving rational cubic spline for positive and convex data, Egypt. Inform. J., 12, 231, 10.1016/j.eij.2011.10.002
Jena, 2001, A subdivision algorithm for generalized Bernstein bezier curves, Comput. Aided Geom. Design, 18, 673, 10.1016/S0167-8396(01)00061-9
Jena, 2002, A subdivision algorithm for trigonometric spline curves, Comput. Aided Geom. Design, 19, 71, 10.1016/S0167-8396(01)00090-5
Jena, 2003, A non-stationary subdivision scheme for curve interpolation, ANZIAM J., E(44), E216
Jena, 2003, A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes, Comput. Aided Geom. Design, 20, 61, 10.1016/S0167-8396(03)00008-6
Jeong, 2017, Construction of Hermite subdivision schemes reproducing polynomials, J. Math. Anal. Appl., 451, 565, 10.1016/j.jmaa.2017.02.014
Jeong, 2019, Analysis of non-stationary hermite subdivision schemes reproducing exponential polynomials, J. Comput. Appl. Math., 349, 452, 10.1016/j.cam.2018.07.050
Kuijt, 1998
Kuijt, 2002, Shape preserving interpolatory subdivision schemes for nonuniform data, J. Approx. Thoery, 114, 1, 10.1006/jath.2001.3628
Merrien, 1992, A family of Hermite interpolants by bisection algorithms, Numer. Alg., 2, 187, 10.1007/BF02145385
Merrien, 2012, From Hermite to stationary subdivision schemes in one or several variables, Adv. Comput. Math., 36, 547, 10.1007/s10444-011-9190-7
Merrien, 2017, Extended Hermite subdivision schemes, J. Comput. Appl. Math., 20, 343, 10.1016/j.cam.2016.12.002
Merrien, 2019, Generalized taylor operators, polynomial chains, and Hermite subdivision schemes, Numer. Math., 142, 167, 10.1007/s00211-018-0996-9
Moosmüller, 2019, A note on spectral properties of Hermite subdivision operators, Comput. Aided Geom. Design, 69, 1, 10.1016/j.cagd.2018.12.002
Moosmüller, 2019, Increasing the smoothness of vector and Hermite subdivision schemes, IMA J. Numer. Anal., 39, 579, 10.1093/imanum/dry010
Moosmüller, 2020, Stirling numbers and gregory coefficients for the factorization of Hermite subdivision operators, IMA J. Numer. Anal., draa047, 10.1093/imanum/draa047
Sarfraz, 2002, Visualization of positive and convex data by a rational cubic spline interpolation, Inform. Sci., 146, 239, 10.1016/S0020-0255(02)00209-8
Schumaker, 1983, On shape preserving quadratic spline interpolation, SIAM J. Numer. Anal., 20, 854, 10.1137/0720057
V. Uhlmann, R. Delgado-Gonzalo, C. Conti, L. Romani, M. Unser, Exponential Hermite splines for the analysis of biomedical images, in: Proceedings of the Thirty-Ninth IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), 2014, pp. 1650–1653.