A HLL-Rankine–Hugoniot Riemann solver for complex non-linear hyperbolic problems
Tài liệu tham khảo
Lax, 1971, Sock waves and entropy, 603
Harten, 1983, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35, 10.1137/1025002
Godunov, 1959, A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations, Math. Sb., 47, 271
Einfeldt, 1988, On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 294, 10.1137/0725021
Einfeldt, 1991, On Godunov-type methods near low densities, J. Comput. Phys., 92, 273, 10.1016/0021-9991(91)90211-3
Linde, 2002, A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws, Int. J. Numer. Meth. Fluids, 40, 391, 10.1002/fld.312
Miyoshi, 2005, A Multi-state HLL approximate Riemann solver for ideal Magnetohydrodynamics, J. Comput. Phys., 208, 315, 10.1016/j.jcp.2005.02.017
Bouchut, 2007, A multiwave approximate Riemann solver for ideal MHD based on relaxation I – theoretical framework, Numer. Math., 108, 7, 10.1007/s00211-007-0108-8
Bouchut, 2010, A multiwave approximate Riemann solver for ideal MHD based on relaxation II – numerical implementation with 3 and 5 waves, Numer. Math., 115, 647, 10.1007/s00211-010-0289-4
Batten, 1997, On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18, 1553, 10.1137/S1064827593260140
Toro, 1994, Restoration of the contact surface in the HLL Riemann solver, Shock Waves, 4, 25, 10.1007/BF01414629
Gurski, 2004, An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics, SIAM J. Sci. Comput., 25, 2165, 10.1137/S1064827502407962
Liu, 1994, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200, 10.1006/jcph.1994.1187
Jiang, 1996, Efficient implementation of weighted WENO schemes, J. Comput. Phys., 126, 202, 10.1006/jcph.1996.0130
Balsara, 2000, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high-order of accuracy, J. Comput. Phys., 160, 405, 10.1006/jcph.2000.6443
C-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253 ICASE Report 97–65 (1997).
Levy, 2000, Compact central WENO schemes for multidimensional conservation laws, SIAM J. Sci. Comput., 22, 656, 10.1137/S1064827599359461
Capdeville, 2011, A High-order multi-dimensional HLL-Riemann solver for non-linear Euler equations, J. Comput. Phys., 230, 2915, 10.1016/j.jcp.2010.12.043
Perthame, 1996, On positive preserving finite volume schemes for compressible Euler equations, Numer. Math., 73, 119, 10.1007/s002110050187
T. Linde, P.L. Roe, Robust Euler codes, AIAA-97-2098, 1997, pp. 83–93.
Berthon, 2006, Robustness of MUSCL schemes for 2D unstructured meshes, J. Comput. Phys., 218, 495, 10.1016/j.jcp.2006.02.028
Berthon, 2005, Stability of the MUSCL schemes for the Euler equations, Commun. Math. Sci., 3, 133, 10.4310/CMS.2005.v3.n2.a3
Zhang, 2010, On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 8918, 10.1016/j.jcp.2010.08.016
Zhang, 1990, Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems, SIAM J. Math. Anal., 21, 593, 10.1137/0521032
C.W. Schulz-Rinne, J.P. Collins, H.M. Glaz, Numerical solution of the Riemann problem for two-dimensional gas dynamics, SIAM J. Sci. Comput. 14 (6) (1993) 1394–1414.
Shi, 2003, Resolution of high-order WENO schemes for complicated flow structures, J. Comput. Phys., 186, 690, 10.1016/S0021-9991(03)00094-9
Woodward, 1984, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115, 10.1016/0021-9991(84)90142-6
Cockburn, 1998, The Runge–Kutta discontinuous galerkin method for conservation laws V, J. Comput. Phys., 141, 199, 10.1006/jcph.1998.5892
Toro, 1997
J. Zhu, J. Qiu, C-W. Shu, M. Dumbser, Runge–Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes, J. Comput. Phys. 227 (2008) 4330–4353.
Shu, 1988, Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439, 10.1016/0021-9991(88)90177-5
Hillier, 1991, Computation of shock wave diffraction at a ninety degrees convex edge, Shock Waves, 89, 10.1007/BF01414904
Quirk, 1994, A contribution to the great Riemann solver debate, Int. J. Numer. Meth. Fluids, 18, 555, 10.1002/fld.1650180603
van Albada, 1982, A comparative study of computational methods in cosmic gas dynamics, Astron. Astroph., 108, 76
Glimm, 1988, The dynamics of bubble growth for Rayleigh–Taylor instability, Phys. Fluids, 31, 447, 10.1063/1.866826
Sharp, 1984, An overview of Rayleigh–Taylor instability, Physica, 12D, 3
Grasso, 2000, Shock-wave-vortex interactions: shock and vortex deformations, and sound production, Theoret. Comput. Fluid Dyn., 13, 421, 10.1007/s001620050121
Qiu, 2002, On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes, J. Comput. Phys., 183, 187, 10.1006/jcph.2002.7191
Zhang, 2010, On maximum-principle-satisfying high-order schemes for scalar conservation laws, J. Comput. Phys., 229, 3091, 10.1016/j.jcp.2009.12.030
Zhang, 2012, Maximum-principle-satisfying and positivity-preserving high-order discontinuous Galerkin schemes for conservation laws on triangular meshes, J. Scient. Comput., 50, 29, 10.1007/s10915-011-9472-8
Balsara, 2012, Self-adjusting, positivity preserving high-order scheme for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 7504, 10.1016/j.jcp.2012.01.032