A Guide to Conducting a Meta-Analysis with Non-Independent Effect Sizes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramovitch, A., Anholt, G., Raveh-Gottfried, S., Hamo, N., & Abramowitz, J. S. (2018). Meta-analysis of intelligence quotient (IQ) in obsessive-compulsive disorder. Neuropsychology Review, 28(1), 111–120. https://doi.org/10.1007/s11065-017-9358-0
Albarracín, D., Cuijpers, P., Eastwick, P. W., Johnson, B. T., Roisman, G. I., Sinatra, G. M., & Verhaeghen, P. (2018). Editorial. Psychological Bulletin, 144(3), 223–226. https://doi.org/10.1037/bul0000147
Anderson, S. F., & Maxwell, S. E. (2016). There’s more than one way to conduct a replication study: Beyond statistical significance. Psychological Methods, 21(1), 1–12. https://doi.org/10.1037/met0000051
Belleville, S., Fouquet, C., Hudon, C., Zomahoun, H. T. V., Croteau, J., & Consortium for the Early Identification of Alzheimer’s disease-Quebec. (2017). Neuropsychological measures that predict progression from mild cognitive impairment to Alzheimer’s type dementia in older adults: A systematic review and meta-analysis. Neuropsychology Review, 27(4), 328–353. https://doi.org/10.1007/s11065-017-9361-5
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester, West Sussex, U.K.; Hoboken: John Wiley & Sons.
Borenstein, M., Higgins, J. P. T., Hedges, L. V., & Rothstein, H. R. (2017). Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8(1), 5–18. https://doi.org/10.1002/jrsm.1230
Burmester, B., Leathem, J., & Merrick, P. (2016). Subjective cognitive complaints and objective cognitive function in aging: A systematic review and meta-analysis of recent cross-sectional findings. Neuropsychology Review, 26(4), 376–393. https://doi.org/10.1007/s11065-016-9332-2
Card, N. A. (2012). Applied meta-analysis for social science research. New York: The Guilford Press.
Cheung, M. W.-L. (2013). Multivariate meta-analysis as structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 20(3), 429–454. https://doi.org/10.1080/10705511.2013.797827
Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychological Methods, 19(2), 211–229. https://doi.org/10.1037/a0032968
Cheung, M. W.-L. (2015a). Meta-analysis: A structural equation modeling approach. Chichester, West Sussex: John Wiley & Sons, Inc..
Cheung, M. W.-L. (2015b). metaSEM: An R package for meta-analysis using structural equation modeling. Frontiers in Psychology, 5(1521). https://doi.org/10.3389/fpsyg.2014.01521
Cheung, M. W.-L. (2018). Computing multivariate effect sizes and their sampling covariance matrices with structural equation modeling: Theory, examples, and computer simulations. Frontiers in Psychology, 9(1387). https://doi.org/10.3389/fpsyg.2018.01387
Cheung, M. W.-L., & Vijayakumar, R. (2016). A guide to conducting a meta-analysis. Neuropsychology Review, 26(2), 121–128. https://doi.org/10.1007/s11065-016-9319-z
Cooper, H. M., Hedges, L. V., & Valentine, J. C. (2009). The handbook of research synthesis and meta-analysis (2nd ed.). New York: Russell Sage Foundation.
Demidenko, E. (2013). Mixed models: Theory and applications with R (2nd ed.). Hoboken, N.J: Wiley-Interscience.
Fernández-Castilla, B., Maes, M., Declercq, L., Jamshidi, L., Beretvas, S. N., Onghena, P., & den Noortgate, W. V. (2018). A demonstration and evaluation of the use of cross-classified random-effects models for meta-analysis. Behavior Research Methods, 1–19. https://doi.org/10.3758/s13428-018-1063-2
Fischer, R., & Boer, D. (2011). What is more important for national well-being: Money or autonomy? A meta-analysis of well-being, burnout, and anxiety across 63 societies. Journal of Personality and Social Psychology, 101(1), 164–184. https://doi.org/10.1037/a0023663
Fischer, R., Hanke, K., & Sibley, C. G. (2012). Cultural and institutional determinants of social dominance orientation: A cross-cultural meta-analysis of 27 societies. Political Psychology, 33(4), 437–467. https://doi.org/10.1111/j.1467-9221.2012.00884.x
Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 357–376). New York: Russell Sage Foundation.
Goldstein, H. (2011). Multilevel statistical models (4th ed.). Hoboken, N.J: Wiley.
Gurevitch, J., Koricheva, J., Nakagawa, S., & Stewart, G. (2018). Meta-analysis and the science of research synthesis. Nature, 555(7695), 175–182. https://doi.org/10.1038/nature25753
Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.
Hedges, L. V., & Schauer, J. M. (2018). Statistical analyses for studying replication: Meta-analytic perspectives. Psychological Methods. https://doi.org/10.1037/met0000189
Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1(1), 39–65. https://doi.org/10.1002/jrsm.5
Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539–1558. https://doi.org/10.1002/sim.1186
Hunt, M. (1997). How science takes stock: The story of meta-analysis. New York: Russell Sage Foundation.
Ishak, K. J., Platt, R. W., Joseph, L., & Hanley, J. A. (2008). Impact of approximating or ignoring within-study covariances in multivariate meta-analyses. Statistics in Medicine, 27(5), 670–686. https://doi.org/10.1002/sim.2913
Jackson, D., Riley, R., & White, I. R. (2011). Multivariate meta-analysis: Potential and promise. Statistics in Medicine, 30(20), 2481–2498. https://doi.org/10.1002/sim.4172
Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis Methods, 2(1), 61–76. https://doi.org/10.1002/jrsm.35
Li, J., & Fine, J. P. (2011). Assessing the dependence of sensitivity and specificity on prevalence in meta-analysis. Biostatistics, 12(4), 710–722. https://doi.org/10.1093/biostatistics/kxr008
López-López, J. A., Van den Noortgate, W., Tanner-Smith, E. E., Wilson, S. J., & Lipsey, M. W. (2017). Assessing meta-regression methods for examining moderator relationships with dependent effect sizes: A Monte Carlo simulation. Research Synthesis Methods, 8(4), 435–450. https://doi.org/10.1002/jrsm.1245
Loring, D. W., & Bowden, S. C. (2016). Editorial. Neuropsychology Review, 26(1), 1–2. https://doi.org/10.1007/s11065-015-9314-9
Mauger, C., Lancelot, C., Roy, A., Coutant, R., Cantisano, N., & Gall, D. L. (2018). Executive functions in children and adolescents with turner syndrome: A systematic review and meta-analysis. Neuropsychology Review, 28(2), 188–215. https://doi.org/10.1007/s11065-018-9372-x
Mewborn, C. M., Lindbergh, C. A., & Stephen Miller, L. (2017). Cognitive interventions for cognitively healthy, mildly impaired, and mixed samples of older adults: A systematic review and meta-analysis of randomized-controlled trials. Neuropsychology Review, 27(4), 403–439. https://doi.org/10.1007/s11065-017-9350-8
Moeyaert, M., Ugille, M., Beretvas, S. N., Ferron, J., Bunuan, R., & den Noortgate, W. V. (2017). Methods for dealing with multiple outcomes in meta-analysis: A comparison between averaging effect sizes, robust variance estimation and multilevel meta-analysis. International Journal of Social Research Methodology, 20(6), 559–572. https://doi.org/10.1080/13645579.2016.1252189
Moeyaert, M., Ugille, M., Ferron, J. M., Beretvas, S. N., & Van den Noortgate, W. (2013). The three-level synthesis of standardized single-subject experimental data: A Monte Carlo simulation study. Multivariate Behavioral Research, 48(5), 719–748. https://doi.org/10.1080/00273171.2013.816621
Muthén, B. O., & Muthén, L. K. (2017). Mplus user’s guide (8th ed.). Los Angeles, CA: Muthén & Muthén.
Nam, I.-S., Mengersen, K., & Garthwaite, P. (2003). Multivariate meta-analysis. Statistics in Medicine, 22(14), 2309–2333. https://doi.org/10.1002/sim.1410
Open Science Collaboration. (2012). An open, large-scale, collaborative effort to estimate the reproducibility of psychological science. Perspectives on Psychological Science, 7(6), 657–660. https://doi.org/10.1177/1745691612462588
Open Science Collaboration. (2015). Estimating the reproducibility of psychological. Science, 349(6251), aac4716. https://doi.org/10.1126/science.aac4716
Prado, C. E., Watt, S., & Crowe, S. F. (2018). A meta-analysis of the effects of antidepressants on cognitive functioning in depressed and non-depressed samples. Neuropsychology Review, 28(1), 32–72. https://doi.org/10.1007/s11065-018-9369-5
R Development Core Team. (2019). R: A language and environment for statistical computing. Vienna: Austria Retrieved from http://www.R-project.org/
Raudenbush, S. W., Becker, B. J., & Kalaian, H. (1988). Modeling multivariate effect sizes. Psychological Bulletin, 103(1), 111–120. https://doi.org/10.1037/0033-2909.103.1.111
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. Thousand Oaks: Sage Publications.
Riley, R. D. (2009). Multivariate meta-analysis: The effect of ignoring within-study correlation. Journal of the Royal Statistical Society: Series A (Statistics in Society), 172(4), 789–811. https://doi.org/10.1111/j.1467-985X.2008.00593.x
Riley, R. D., Thompson, J. R., & Abrams, K. R. (2008). An alternative model for bivariate random-effects meta-analysis when the within-study correlations are unknown. Biostatistics, 9(1), 172–186. https://doi.org/10.1093/biostatistics/kxm023
Scammacca, N., Roberts, G., & Stuebing, K. K. (2014). Meta-analysis with complex research designs dealing with dependence from multiple measures and multiple group comparisons. Review of Educational Research, 84(3), 328–364. https://doi.org/10.3102/0034654313500826
Sherman, D. S., Mauser, J., Nuno, M., & Sherzai, D. (2017). The efficacy of cognitive intervention in mild cognitive impairment (MCI): A meta-analysis of outcomes on neuropsychological measures. Neuropsychology Review, 27(4), 440–484. https://doi.org/10.1007/s11065-017-9363-3
Shin, I.-S. (2009). Same author and same data dependence in meta-analysis (Ph.D.). the Florida State University, United States -- Florida.
Stadler, M., Becker, N., Gödker, M., Leutner, D., & Greiff, S. (2015). Complex problem solving and intelligence: A meta-analysis. Intelligence, 53, 92–101. https://doi.org/10.1016/j.intell.2015.09.005
Timm, N. H. (1999). A note on testing for multivariate effect sizes. Journal of Educational and Behavioral Statistics, 24(2), 132–145. https://doi.org/10.3102/10769986024002132
Tipton, E. (2015). Small sample adjustments for robust variance estimation with meta-regression. Psychological Methods, 20(3), 375–393. https://doi.org/10.1037/met0000011
Van den Noortgate, W., López-López, J. A., Marín-Martínez, F., & Sánchez-Meca, J. (2013). Three-level meta-analysis of dependent effect sizes. Behavior Research Methods, 45(2), 576–594. https://doi.org/10.3758/s13428-012-0261-6
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48. https://doi.org/10.18637/jss.v036.i03
Weissberger, G. H., Strong, J. V., Stefanidis, K. B., Summers, M. J., Bondi, M. W., & Stricker, N. H. (2017). Diagnostic accuracy of memory measures in Alzheimer’s dementia and mild cognitive impairment: A systematic review and meta-analysis. Neuropsychology Review, 27(4), 354–388. https://doi.org/10.1007/s11065-017-9360-6