A Green, Efficient Approach on Extraction of Polyphenols from Fenugreek Seeds (Trigonella foenum-graecum): DES and β-Cyclodextrin Assisted Extraction
Tóm tắt
Trigonella foenum-graecum, is a widely used medicinal and culinary plant. The antioxidant compounds extracted from the seeds of this plant exert antioxidant, anti-inflammatory, and hypoglycemic effects. In this study, antioxidant compounds from the seeds of Trigonella foenum-graecum were obtained using the deep eutectic solvent (DES) assisted and β-cyclodextrin assisted extraction method. The process was optimized by implementing a response surface methodology that took into consideration the following independent variables: β-cyclodextrin concentration (Cβ-CD) or DES concentration, solid-to-liquid ratio, and temperature. Based on the results from single-factor experiments, response surface methodology was used to optimize the extraction conditions. The scavenging activity of Trigonella foenum-graecum antioxidant compounds on DPPH*, the total phenolic yield (YTP) and total flavonoid yield (YTF) was determined. Using the optimized conditions for DES extractions, the yields were 0.019 mmol TRE/g seed, 14.73 mg GAE/g seed and 0.092 mmol QE/g seed for AAR, YTP and YYF respectively. For β-cd assisted extraction, using the optimized conditions, the yields were 0.1213 mmol TRE/g seed, 12.89 mg GAE/g seed and 0.1602 mmol QE/g seed for AAR, YTP and YYF respectively. However, based on regression analysis and optimization based on solvent type it is observed that the extraction yield with β-cyclodextrin solutions is statistically significantly (P < 0.05) higher than the corresponding yield with solutions of deep eutectic solvent mixtures.
Tài liệu tham khảo
Vilas-Boas, A.A., Campos, D.A., Nunes, C., Ribeiro, S., Nunes, J., Oliveira, A., Pintado, M.: Polyphenol extraction by different techniques for valorisation of non-compliant portuguese sweet cherries towards a novel antioxidant extract. Sustainability 12, 5556 (2020). https://doi.org/10.3390/su12145556
Ribeiro, B.D., Coelho-Zafur, M.A., Marrucho, I.M.: Extraction of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro) with cholinium-based ionic liquids and deep eutectic solvents. Eur. Food Res. Technol. 237, 965–975 (2013). https://doi.org/10.1007/s00217-013-2068-9
Zhang, L., Zheng, D., Zhang, Q.-F.: Purification of total flavonoids from Rhizoma Smilacis Glabrae through cyclodextrin-assisted extraction and resin adsorption. Food Sci. Nutr. 7, 449–456 (2019). https://doi.org/10.1002/fsn3.809
Kaviarasan, S., Naik, G.H., Gangabhagirathi, R., Anuradha, C.V., Priyadarsini, K.I.: In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem. 103, 31–37 (2007). https://doi.org/10.1016/j.foodchem.2006.05.064
Pena-Pereira, F., Namiesnik, J.: Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. Chemsuschem 7, 1784–1800 (2014). https://doi.org/10.1002/cssc.201301192
Al-Juhaimi, F., Adiamo, O.Q., Ghafoor, K., Babiker, E.E.: Optimization of ultrasonic-assisted extraction of phenolic compounds from fenugreek (Trigonella foenum-graecum L.) seed. CyTA – J. Food (2015). https://doi.org/10.1080/19476337.2015.1110202
Dai, Y., Witkamp, G.J., Verpoorte, R., Choi, Y.H.: Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal. Chem. 85, 6272–6278 (2013). https://doi.org/10.1021/ac400432p
Mourtzinos, I., Anastasopoulou, E., Petrou, A., Grigorakis, S., Makris, D., Biliaderis, C.G.: Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J. Food Sci. Technol. 53, 3939–3947 (2016). https://doi.org/10.1007/s13197-016-2381-y
Cai, R., Yuan, Y., Cui, L., Wang, Z., Yue, T.: Cyclodextrin-assisted extraction of phenolic compounds: current research and future prospects. Trends Food Sci. Technol. 79, 19–27 (2018). https://doi.org/10.1016/j.tifs.2018.06.015
Choi, Y.H., van Spronsen, J., Dai, Y., Verberne, M., Hollmann, F., Arends, I.W.C.E., Witkamp, G.-J., Verpoorte, R.: Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 156, 1701–1705 (2011). https://doi.org/10.1104/pp.111.178426
Smith, E.L., Abbott, A.P., Ryder, K.S.: Deep eutectic solvents (DESs) and their applications. Chem Rev. 114, 11060–11082 (2014). https://doi.org/10.1021/cr300162p
Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. (Camb). (2003). https://doi.org/10.1039/b210714g
CvjetkoBubalo, M., Ćurko, N., Tomašević, M., KovačevićGanić, K., Radojčić, R.I.: Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 200, 159–166 (2016). https://doi.org/10.1016/j.foodchem.2016.01.040
Benvenutti, L., Zielinski, A.A.F., Ferreira, S.R.S.: Which is the best food emerging solvent: IL, DES or NADES? Trends Food Sci. Technol. 90, 133–146 (2019). https://doi.org/10.1016/j.tifs.2019.06.003
Kurkov, S.V., Loftsson, T.: Cyclodextrins. Int J Pharm. 453, 167–180 (2013). https://doi.org/10.1016/j.ijpharm.2012.06.055
Diamanti, A.C., Igoumenidis, P.E., Mourtzinos, I., Yannakopoulou, K., Karathanos, V.T.: Green extraction of polyphenols from whole pomegranate fruit using cyclodextrins. Food Chem. 214, 61–66 (2017). https://doi.org/10.1016/j.foodchem.2016.07.072
Mortensen, A., Aguilar, F., Crebelli, R., Di-Domenico, A., Dusemund, B., Frutos, M.J., Galtier, P., Gott, D., Gundert-Remy, U., Leblanc, J.C., Lindtner, O., Moldeus, P., Mosesso, P., Parent-Massin, D., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R.A., Wright, M., Younes, M., Boon, P., Chrysafidis, D., Gürtler, R., Tobback, P., Arcella, D., Rincon, A.M., Lambré, C.: Re-evaluation of β-cyclodextrin (E 459) as a food additive. EFSA J. (2016). https://doi.org/10.2903/j.efsa.2016.4628
Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004). https://doi.org/10.1016/S0032-9592(03)00258-9
Ahmad, A., Alghamdi, S.S., Mahmood, K., Afzal, M.: Fenugreek a multipurpose crop: potentialities and improvements. Saudi J. Biol. Sci. 23, 300–310 (2016). https://doi.org/10.1016/j.sjbs.2015.09.015
Wani, S.A., Kumar, P.: Fenugreek: a review on its nutraceutical properties and utilization in various food products. J. Saudi Soc. Agric. Sci. 17, 97–106 (2018). https://doi.org/10.1016/j.jssas.2016.01.007
Benayad, Z., Gomez-Cordoves, C., Es-Safi, N.E.: Characterization of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) crude seeds by HPLC-DAD-ESI/MS analysis. Int. J. Mol. Sci. 15, 20668–20685 (2014). https://doi.org/10.3390/ijms151120668
Benayad, Z., Gómez-Cordovés, C., Es-Safi, N.E.: Identification and quantification of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) germinated seeds by LC–DAD–ESI/MS analysis. J. Food Compos. Anal. 35, 21–29 (2014). https://doi.org/10.1016/j.jfca.2014.04.002
Rababah, T.M., Ereifej, K.I., Esoh, R.B., Al-u’datt, M.H., Alrababah, M.A., Yang, W.: Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants. Nat. Prod. Res. 25, 596–605 (2011). https://doi.org/10.1080/14786419.2010.488232
Pajak, P., Socha, R., Broniek, J., Krolikowska, K., Fortuna, T.: Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 275, 69–76 (2019). https://doi.org/10.1016/j.foodchem.2018.09.081
Omezzine, F., Bouaziz, M., Daami-Remadi, M., Simmonds, M.S.J., Haouala, R.: Chemical composition and antifungal activity of Trigonella foenum-graecum L. varied with plant ploidy level and developmental stage. Arab. J. Chem. 10, S3622–S3631 (2017). https://doi.org/10.1016/j.arabjc.2014.03.013
Kenny, O., Smyth, T.J., Hewage, C.M., Brunton, N.P.: Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chem. 141, 4295–4302 (2013). https://doi.org/10.1016/j.foodchem.2013.07.016
Belguith-Hadriche, O., Bouaziz, M., Jamoussi, K., Simmonds, M.S., El Feki, A., Makni-Ayedi, F.: Comparative study on hypocholesterolemic and antioxidant activities of various extracts of fenugreek seeds. Food Chem. 138, 1448–1453 (2013). https://doi.org/10.1016/j.foodchem.2012.11.003
Jiang, J.X., Zhu, L.W., Zhang, W.M., Sun, R.C.: Characterization of galactomannan gum from fenugreek (Trigonella foenum-graecum) seeds and its rheological properties. Int. J. Polym. Mater. 56, 1145–1154 (2007). https://doi.org/10.1080/00914030701323745
Loukri, A., Tsitlakidou, P., Goula, A., Assimopoulou, A.N., Kontogiannopoulos, K.N., Mourtzinos, I.: Green extracts from coffee pulp and their application in the development of innovative brews. Appl. Sci. 10, 6982 (2020). https://doi.org/10.3390/app10196982
Arnous, A., Makris, D.P., Kefalas, P.: Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. J. Food Compos. Anal. 15, 655–665 (2002). https://doi.org/10.1006/jfca.2002.1070
Cvek, J., Medić-Šarić, M., Jasprica, I., Zubčić, S., Vitali, D., Mornar, A., Vedrina-Dragojević, I., Tomić, S.: Optimisation of an extraction procedure and chemical characterisation of Croatian propolis tinctures. Phytochem. Anal. 18, 451–459 (2007). https://doi.org/10.1002/pca.1001
Francisco, M., van den Bruinhorst, A., Kroon, M.C.: Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew. Chem. Int. Ed. 52, 3074–3085 (2013). https://doi.org/10.1002/anie.201207548
Hammond, O.S., Bowron, D.T., Edler, K.J.: The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution. Angew. Chem. Int. Ed. 56, 9782–9785 (2017). https://doi.org/10.1002/anie.201702486
Zhu, G., Xiao, Z., Zhu, G., Niu, Y.: Encapsulation of l-menthol in hydroxypropyl-β-cyclodextrin and release characteristics of the inclusion complex. Pol. J. Chem. Technol. 18, 110 (2016). https://doi.org/10.1515/pjct-2016-0056
Rayyan, S., Fossen, T., Andersen, O.M.: Flavone C-glycosides from seeds of fenugreek, Trigonella foenum-graecum L. J. Agric. Food Chem. 58, 7211–7217 (2010). https://doi.org/10.1021/jf100848c
Georgantzi, C., Lioliou, A.-E., Paterakis, N., Makris, D.P.: Combination of lactic acid-based deep eutectic solvents (DES) with β-cyclodextrin: performance screening using ultrasound-assisted extraction of polyphenols from selected native Greek medicinal plants. Agronomy 7, 54 (2017). https://doi.org/10.3390/agronomy7030054
Kumar, S., Pandey, A.K.: Chemistry and biological activities of flavonoids: an overview. Sci. World J. 2013, 162750 (2013). https://doi.org/10.1155/2013/162750
Elboughdiri, N.: Effect of time, solvent-solid ratio, ethanol concentration and temperature on extraction yield of phenolic compounds from olive leaves. Eng. Technol. Appl. Sci. Res. 8, 2805–2808 (2018). https://doi.org/10.48084/etasr.1983
Pinelo, M., Rubilar, M., Sineiro, J., Núñez, M.: Extraction of antioxidant phenolics from almond hulls (Prunus amygdlus) and pine sawdust (Pinus pinaster). Food Chem. 85, 267–273 (2004). https://doi.org/10.1016/j.foodchem.2003.06.020
Wijngaard, H., Hossain, M.B., Rai, D.K., Brunton, N.: Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 46, 505–513 (2012). https://doi.org/10.1016/j.foodres.2011.09.027
Blidi, S., Bikaki, M., Grigorakis, S., Loupassaki, S., Makris, D.P.: A comparative evaluation of bio-solvents for the efficient extraction of polyphenolic phytochemicals: apple waste peels as a case study. Waste Biomass Valoriz. 6, 1125–1133 (2015). https://doi.org/10.1007/s12649-015-9410-3
Alvarez-Parrilla, E., de la Rosa, L.A., Rodrigo-García, J., Escobedo-González, R., Mercado-Mercado, G., Moyers-Montoya, E., Vázquez-Flores, A., González-Aguilar, G.A.: Dual effect of β-cyclodextrin (β-CD) on the inhibition of apple polyphenol oxidase by 4-hexylresorcinol (HR) and methyl jasmonate (MJ). Food Chem. 101, 1346–1356 (2007). https://doi.org/10.1016/j.foodchem.2006.03.040
Stražišar, M., Andrenšek, S., Šmidovnik, A.: Effect of β-cyclodextrin on antioxidant activity of coumaric acids. Food Chem. 110, 636–642 (2008). https://doi.org/10.1016/j.foodchem.2008.02.051
Baghbani-Arani, A., Modarres-Sanavy, S.A.M., Mashhadi-Akbar-Boojar, M., Mokhtassi-Bidgoli, A.: Towards improving the agronomic performance, chlorophyll fluorescence parameters and pigments in fenugreek using zeolite and vermicompost under deficit water stress. Ind. Crops Prod. 109, 346–357 (2017). https://doi.org/10.1016/j.indcrop.2017.08.049
Gabriele, F., Chiarini, M., Germani, R., Tiecco, M., Spreti, N.: Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. J. Mol. Liq. 291, 111301 (2019). https://doi.org/10.1016/j.molliq.2019.111301
Dai, J., Mumper, R.J.: Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010). https://doi.org/10.3390/molecules15107313
Peng, Y., Meng, Q., Zhou, J., Chen, B., Xi, J., Long, P., Zhang, L., Hou, R.: Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food Chem. 242, 527–532 (2018). https://doi.org/10.1016/j.foodchem.2017.09.094
Korompokis, K., Igoumenidis, P., Mourtzinos, I., Karathanos, V.: Green extraction and simultaneous inclusion complex formation of Sideritis scardica polyphenols. Int. Food Res. J. 24, 1233–1238 (2017)