A Gravity Assist Mapping Based on Gaussian Process Regression

Yuxin Liu1, R. Noomen1, Pieter Visser1
1Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

Tóm tắt

AbstractWe develop a Gravity Assist Mapping to quantify the effects of a flyby in a two-dimensional circular restricted three-body situation based on Gaussian Process Regression (GPR). This work is inspired by the Keplerian Map and Flyby Map. The flyby is allowed to occur anywhere above 300 km altitude at the Earth in the system of Sun-(Earth+Moon)-spacecraft, whereas the Keplerian map is typically restricted to the cases outside the Hill sphere only. The performance of the GPR model and the influence of training samples (number and distribution) on the quality of the prediction of post-flyby orbital states are investigated. The information provided by this training set is used to optimize the hyper-parameters in the GPR model. The trained model can make predictions of the post-flyby state of an object with an arbitrary initial condition and is demonstrated to be efficient and accurate when evaluated against the results of numerical integration. The method can be attractive for space mission design.

Từ khóa


Tài liệu tham khảo

D’Amario, L.A., Bright, L.E., Wolf, A.A.: Galileo trajectory design. Space science reviews 60(1-4), 23–78 (1992)

Broucke, R.A.: The celestial mechanics of gravity assist. AIAA/AAS Astrodynamics Conference, Minneapolis, Minnesota (1988)

Longuski, J.M., Williams, S.N.: Automated design of gravity-assist trajectories to mars and the outer planets. Celest. Mech. Dyn. Astron. 52(3), 207–220 (1991)

Strange, N.J., Longuski, J.M.: Graphical method for gravity-assist trajectory design. J. Spacecr. Rocket. 39(1), 9–16 (2002)

de Almeida Prado, A.F.B., de Felipe, G.: An analytical study of the powered swing-by to perform orbital maneuvers. Adv. Space Res. 40(1), 102–112 (2007)

Ross, S.D., Scheeres, D.J.: Multiple gravity assists, capture, and escape in the restricted three-body problem. IAM J. App. Dynamic. Sys. 6(3), 576–596 (2007)

Ross, S.D., Koon, W.S., Lo, M.W., Marsden, J.E.: Design of a multi-moon orbiter. American Astronautical Society. No. 114, pp. 669–683. (2003)

Whiffen, G.J.: An investigation of a Jupiter Galilean moon orbiter trajectory. In: AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MN, AAS. 03–544 (2003)

Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos: An Interdisciplinary Journal of Nonlinear Science 10, 427–469 (2000)

Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the moon. Celest. Mech. Dyn. Astron. 81, 63–73 (2001)

Howell, K.C., Marchand, B.G., Lo, M.W.: Temporary satellite capture of short-period Jupiter family comets from the perspective of dynamical systems. J. Astro. Sci. 49(4), 539–557 (2001)

Petrosky, T.Y., Broucke, R.: Area-preserving mappings and deterministic chaos for nearly parabolic motions. Celest. Mech. Dyn. Astron. 42(1), 53–79 (1987)

Shevchenko, I.I.: The Kepler map in the three-body problem, New Astronomy. New Astron. 16(2), 94–99 (2011)

Pe nagaricano, M O, Scheeres, D.J.: A Perturbation Theory. Acta Astronaut. 67(2), 27–37 (2010)

Alessi, E.M., Sánchez, JP: Semi-Analytical Approach for Distant Encounters in the Spatial Circular Restricted Three-Body Problem. Journal of Guidance, Control and Dynamics 39(2), 351–359 (2016)

Campagnola, S., Skerritt, P., Russell, R.P.: Flybys in the planar, circular, restricted, three-body problem. Celest. Mech. Dyn. Astron. 113(3), 343–368 (2012)

Szebehely, V.: Theory of Orbits. Academic Press, New York (1967)

Krige, D.G.: A statistical approach to some basic mine valuation problems on the Witwatersrand. J. South. Afr. Inst. Min. Metall. 52(6), 119–139 (1951)

Shang, H., Liu, Y.: Assessing Accessibility of Main-Belt Asteroids Based on Gaussian Process Regression. J. Guid. Control. Dyn. 40(5), 1144–1154 (2017)

Gao, A., Liao, W.: Efficient gravity field modeling method for small bodies based on Gaussian process regression. Acta Astronaut. 157, 73–91 (2019)

Bouwman, L., Liu, Y., Cowan, K.: Gaussian Process models for preliminary low-thrust trajectory optimization. In: Astrodynamics Specialist Conference, Portland, ME. AAS 19–873, pp. 3687–3706. (2019)

Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning, pp 7–31, 79–128. Massachusetts Institute of Technology Press, Cambridge, Massachusetts London, England (2006)

Olds, A.D., Kluever, C.A., Cupples, M.L.: Interplanetary Mission Design Using Differential Evolution. J. Spacecr. Rocket. 44(5), 1060–1070 (2007)

Sun, S., Zhang, G., Wang, C., Zeng, W., Li, J., Grosse, R.: Differentiable Compositional Kernel Learning for Gaussian Processes. Proceedings of the 35th International Conference on Machine Learning 80, 4828–4837 (2018)

Duvenaud, D.: Automatic model construction with Gaussian processes. Doctoral dissertation, University of Cambridge (2014)

Anderson, J.D., Campbell, J.K., Ekelund, J.E., Ellis, J., Jordan, J.F.: Anomalous orbital-energy changes observed during spacecraft flybys of Earth. Phys. Rev. Lett. 100(9), 091–102 (2008)

Tisserand, F.: Traité de mécanique céleste. Gauthier-Villars (1891)

Campagnola, S., Kawakatsu, Y.: Three-dimensional resonant hopping strategies and the Jupiter Magnetospheric Orbiter. J. Guid. Control. Dyn. 35(1), 340–344 (2012)

Osborne, J.G.: Sampling errors of systematic and random surveys of cover-type areas. J. Am. Stat. Assoc. 37(218), 256–264 (1942)

McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)