A Glycosylated and Catechol-crosslinked ε-Polylysine Hydrogel: Simple Preparation and Excellent Wound Hemostasis and Healing Properties

Chinese Journal of Polymer Science - Tập 40 - Trang 1110-1119 - 2022
Lin Teng1, Zheng-Wei Shao2, Yu-Shi He3, Jia-Yu Lu2, De-Rong Zou2, Chuan-Liang Feng4, Chang-Ming Dong1
1School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, China
2Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
3School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, China
4School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China

Tóm tắt

Commercial tissue adhesives have been widely applied in wound hemostats and dressings while enhancing the hemostasis and healing capabilities is challenging to meet clinical needs. Herein, we designed the glucose- and catechol-functionalized derivatives from commercial ε-polylysine (EPL) and prepared the hydrogels by simple amidation and catechol-crosslinking reactions, which have larger swelling ratios of 220%–240%, suitable microporous size of about 6–8 µm, and tissue adhesion strength of about 20–40 kPa. The hemolysis, cytotoxicity, and cellular double-staining assays indicate that those hydrogels had good biocompatibility and the H-3 hydrogel with higher glucose content gave a lower hemolysis ratio of 0.73%±0.14%. The blood-clotting index, blood cell attachment and adhesion studies showed those hydrogels had fast blood-coagulation, resulting in excellent hemostasis performance with a short hemostatic time of 38–46 s and less blood loss of 19%–34% in a liver hemorrhage model. A full-thickness rat-skin defect model further demonstrates that the H-3 hydrogel achieved fast wound healing with a wound closure of 70.0%±2.7% on postoperative day 7 and nearly full closure on day 14. Remarkably, the hydroproline level that denotes the collagen production reached a higher one of 7.24±0.55 µg/mg comparable to that in normal skins on day 14, evidencing the wound healing was close to completion in the H-3 treatment. Consequently, this work provides a simple method to construct a glycosylated and catechol-functionalized hydrogel platform from commercial EPL, holding translational potentials in wound hemostats and dressings.

Tài liệu tham khảo

Zhao, Y.; Song, S.; Ren, X.; Zhang, J.; Lin, Q.; Zhao, Y. Supramolecular adhesive hydrogels for tissue engineering applications. Chem. Rev. 2022, DOI: https://doi.org/10.1021/acs.chemrev.1c00815. Zuo, X. L.; Wang, S. F.; Le, X. X.; Lu, W.; Chen, T. Self-healing polymeric hydrogels: toward multifunctional soft smart materials. Chinese J. Polym. Sci. 2021, 39, 1262–1280. Chen, K.; Wu, Z.; Liu, Y.; Yuan, Y.; Liu, C. Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment. Adv. Funct. Mater. 2022, DOI: https://doi.org/10.1002/adfm.202109687. Pourshahrestani, S.; Zeimaran, E.; Kadri, N. A.; Mutlu, N.; Boccaccini, A. R. Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing. Adv. Healthc. Mater. 2020, 9, e2000905. Nam, S.; Mooney, D. Polymeric tissue adhesives. Chem. Rev. 2021, 121, 11336–11384. Zhang, K.; Chen, X.; Xue, Y.; Lin, J.; Liang, X.; Zhang, J.; Zhang, J.; Chen, G.; Cai, C.; Liu, J. Tough hydrogel bioadhesives for sutureless wound sealing, hemostasis and biointerfaces. Adv. Funct. Mater. 2022, DOI: https://doi.org/10.1002/adfm.202111465. Yuk, H.; Varela, C. E.; Nabzdyk, C. S.; Mao, X.; Padera, R. F.; Roche, E. T.; Zhao, X. Dry double-sided tape for adhesion of wet tissues and devices. Nature 2019, 575, 169–174. Wang, R.; Li, J.; Chen, W.; Xu, T.; Yun, S.; Xu, Z.; Xu, Z.; Sato, T.; Chi, B.; Xu, H. A biomimetic mussel-inspired ε-poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity. Adv. Funct. Mater. 2017, 27, 1604894. Bai, Q.; Teng, L.; Zhang, X.; Dong, C. M. Multifunctional single-component polypeptide hydrogels: the gelation mechanism, superior biocompatibility, high performance hemostasis, and scarless wound healing. Adv. Healthc. Mater. 2022, 11, e2101809. Teng, L.; Shao, Z.; Bai, Q.; Zhang, X.; He, Y. S.; Lu, J.; Zou, D.; Feng, C.; Dong, C. M. Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing. Adv. Funct. Mater. 2021, 31, 2105628. Wu, S. J.; Yuk, H.; Wu, J.; Nabzdyk, C. S.; Zhao, X. A Multifunctional origami patch for minimally invasive tissue sealing. Adv. Mater. 2021, 33, e2007667. Yuk, H.; Wu, J.; Sarrafian, T. L.; Mao, X.; Varela, C. E.; Roche, E. T.; Griffiths, L. G.; Nabzdyk, C. S.; Zhao, X. Rapid and coagulation-independent haemostatic sealing by a paste inspired by barnacle glue. Nat. Biomed. Eng. 2021, 5, 1131–1142. Shi, J.; Yu, L.; Ding, J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater. 2021, 128, 42–59. Wang, Y. Q.; Dou, X. Y.; Wang, H. F.; Wang, X.; Wu, D. C. Dendrimer-based hydrogels with controlled drug delivery property for tissue adhesion. Chinese J. Polym. Sci. 2021, 39, 1421–1430. Xue, B.; Gu, J.; Li, L.; Yu, W.; Yin, S.; Qin, M.; Jiang, Q.; Wang, W.; Cao, Y. Hydrogel tapes for fault-tolerant strong wet adhesion. Nat. Commun. 2021, 12, 7156. Fichman, G.; Andrews, C.; Patel, N. L.; Schneider, J. P. Antibacterial gel coatings inspired by the cryptic function of a mussel byssal peptide. Adv. Mater. 2021, 33, e2103677. Liang, Y.; Li, Z.; Huang, Y.; Yu, R.; Guo, B. Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano 2021, 15, 7078–7093. Ma, C.; Sun, J.; Li, B.; Feng, Y.; Sun, Y.; Xiang, L.; Wu, B.; Xiao, L.; Liu, B.; Petrovskii, V. S.; Bin, L.; Zhang, J.; Wang, Z.; Li, H.; Zhang, L.; Li, J.; Wang, F.; Gstl, R.; Potemkin, II; Chen, D.; Zeng, H.; Zhang, H.; Liu, K.; Herrmann, A. Ultra-strong bio-glue from genetically engineered polypeptides. Nat. Commun. 2021, 12, 3613. Bevilacqua, M. P.; Huang, D. J.; Wall, B. D.; Lane, S. J.; Edwards, C. K., 3rd; Hanson, J. A.; Benitez, D.; Solomkin, J. S.; Deming, T. J. Amino acid block copolymers with broad antimicrobial activity and barrier properties. Macromol. Biosci. 2017, 17, 1600492. Xu, W. K.; Tang, J. Y.; Yuan, Z.; Cai, C. Y.; Chen, X. B.; Cui, S. Q.; Liu, P.; Yu, L.; Cai, K. Y.; Ding, J. D. Accelerated cutaneous wound healing using an injectable teicoplanin-loaded PLGA-PEG-PLGA thermogel dressing. Chinese J. Polym. Sci. 2019, 37, 548–559. Lu, D.; Wang, H.; Li, T. e.; Li, Y.; Wang, X.; Niu, P.; Guo, H.; Sun, S.; Wang, X.; Guan, X.; Ma, H.; Lei, Z. Versatile surgical adhesive and hemostatic materials: synthesis, properties, and application of thermoresponsive polypeptides. Chem. Mater. 2017, 29, 5493–5503. Li, S.; Chen, N.; Li, X.; Li, Y.; Xie, Z.; Ma, Z.; Zhao, J.; Hou, X.; Yuan, X. Bioinspired double-dynamic-bond crosslinked bioadhesive enables post-wound closure care. Adv. Funct. Mater. 2020, 20, 2000130. Bonduelle, C.; Lecommandoux, S. Synthetic glycopolypeptides as biomimetic analogues of natural glycoproteins. Biomacromolecules 2013, 14, 2973–2983. Parani, M.; Lokhande, G.; Singh, A.; Gaharwar, A. K. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl. Mater. Interfaces 2016, 8, 10049–10069. Gao, Y.; Li, Z.; Huang, J.; Zhao, M.; Wu, J. In situ formation of injectable hydrogels for chronic wound healing. J. Mater. Chem. B 2020, 8, 8768–8780. Wang, D.; Yang, X.; Liu, Q.; Yu, L.; Ding, J. Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture. J. Mater. Chem. B 2018, 6, 6067–6079. Ren, K.; Li, B.; Xu, Q.; Xiao, C.; He, C.; Li, G.; Chen, X. Enzymatically crosslinked hydrogels based on linear poly(ethylene glycol) polymer: performance and mechanism. Polym. Chem. 2017, 8, 7017–7024. Zhang, K.; Feng, Q.; Fang, Z.; Gu, L.; Bian, L. Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics. Chem. Rev. 2021, 121, 11149–11193. Poustchi, F.; Amani, H.; Ahmadian, Z.; Niknezhad, S. V.; Mehrabi, S.; Santos, H. A.; Shahbazi, M. A. Combination therapy of killing diseases by injectable hydrogels: from concept to medical applications. Adv. Healthc. Mater. 2020, 10, 2001571. Guo, B.; Dong, R.; Liang, Y.; Li, M. Haemostatic materials for wound healing applications. Nat. Rev. Chem. 2021, 5, 773–791. Huang, Y.; Zhao, X.; Zhang, Z.; Liang, Y.; Yin, Z.; Chen, B.; Bai, L.; Han, Y.; Guo, B. Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing. Chem. Mater. 2020, 32, 6595–6610. Yu, J.; Wang, K.; Fan, C.; Zhao, X.; Gao, J.; Jing, W.; Zhang, X.; Li, J.; Li, Y.; Yang, J.; Liu, W. An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion. Adv. Mater. 2021, 33, 2008395. Cui, C.; Liu, W. Recent advances in wet adhesives: adhesion mechanism, design principle and applications. Prog. Polym. Sci. 2021, 116, 101388. Maleki, A.; He, J.; Bochani, S.; Nosrati, V.; Shahbazi, M. A.; Guo, B. Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 2021, 15, 18895–18930. Zhang, J.; Zheng, Y.; Lee, J.; Hua, J.; Li, S.; Panchamukhi, A.; Yue, J.; Gou, X.; Xia, Z.; Zhu, L.; Wu, X. A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing. Nat. Commun. 2021, 12, 1670. Xu, X.; Xia, X.; Zhang, K.; Rai, A.; Li, Z.; Zhao, P.; Wei, K.; Zou, L.; Yang, B.; Wong, W. K.; Chiu, P. W. Y.; Bian, L. Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs. Sci. Trans. Med. 2020, 12, eaba8014. Ahmadian, Z.; Correia, A.; Hasany, M.; Figueiredo, P.; Dobakhti, F.; Eskandari, M. R.; Hosseini, S. H.; Abiri, R.; Khorshid, S.; Hirvonen, J.; Santos, H. A.; Shahbazi, M. A. A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH-responsive wound healing acceleration. Adv. Healthc. Mater. 2020, 10, 2001122. Arno, M. C. Engineering the mammalian cell surface with synthetic polymers: strategies and applications. Macromol. Rapid Commun. 2020, 41, 2000302. Xu, C.; Yu, B.; Qi, Y.; Zhao, N.; Xu, F. J. Versatile types of cyclodextrin-based nucleic acid delivery systems. Adv. Healthc. Mater. 2020, 10, 2001183. Cheng, Y.; Zhao, L.; Li, Y.; Xu, T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem. Soc. Rev. 2011, 40, 2673. Liu, C.; Liu, X.; Liu, C.; Wang, N.; Chen, H.; Yao, W.; Sun, G.; Song, Q.; Qiao, W. A highly efficient, in situ wet-adhesive dextran derivative sponge for rapid hemostasis. Biomaterials 2019, 205, 23–37.