A Geometric Criterion for the Existence of Chaos Based on Periodic Orbits in Continuous-Time Autonomous Systems

Springer Science and Business Media LLC - Tập 29 Số 1 - Trang 71-93 - 2023
Xu Zhang1, Guanrong Chen2
1Department of Mathematics, Shandong University, Weihai, China
2Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bertozzi AL. Heteroclinic orbits and chaotic dynamics in planar fluid flows. SIAM J Math Anal 1988;19:1271–1294.

Birman JS, Williams RF. Knotted periodic orbits in dynamical systems-1 Lorenz’s equations. Topology 1983;22:47–82.

Chen G, Ueta T. Yet another chaotic attractor. Int J Bifurcation Chaos 1999;9:1465–1466.

Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N, Leonov G, Prasad A. Hidden attractors in dynamical systems. Phys Rep 2016;637: 1–50.

Eckert M. 2013. Arnold sommerfeld: Science, life and turbulent times 1868–1951, Springer.

Jafari S, Pham V-T, Moghtadaei S, Kingni S. The relationship between chaotic maps and some chaotic systems with hidden attractors. Int J Bifurcation Chaos 2016;26(8 pages):1650211.

Jafari S, Sprott J, Nazarimehr F. Recent new examples of hidden attractors. Eur Phys J Special Topics 2015;224:1469–1476.

Jafari J, Sprott J, Pham V-T, Li CB. Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn 2016;86:1349–1358.

Jiang H, Liu Y, Wei Z, Zhang L. Hidden chaotic attractors in a class of two-dimensional maps. Nonlinear Dyn 2016;85:2719–2727.

Leonov G, Kuznetsov N. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurcation Chaos 2013;23(69 pages):1330002.

Leonov G, Kuznetsov N. On differences and similarities in the analysis of Lorenz, Chen, and Lu systems. Appl Math Comput 2015;256:334–343.

Leonov G, Kuznetsov N, Vagaitsev V. Localization of hidden Chua’s attractors. Phys Lett A 2011;375:2230–2233.

Lorenz E. Deterministic non-periodic flow. J Atmos Sci 1963;20: 130–141.

Lü J, Chen G. Generating multiscroll chaotic attractors: Theories, methods and applications. Int J Bifurcation Chaos 2006;16:775–858.

Melnikov VK. On the stability of the center for time periodic perturbations. Trans Moscow Math Soc 1963;12:1–57.

Mihajlovic N, van Veggel AA, van de Wouw N, Nijmeijer H. Analysis of frictin induced limit cycling in an experimental drill string system. J Dyn Syst Meas Control 2004;126:709–720.

Molaie M, Jafari S, Sprott J, Golpayegani M. Simple chaotic flows with one stable equilibrium. Int J Bifurcation Chaos 2013;23(7 pages):1350188.

Moser J. Stable and Random Motions in Dynamical Systems. Princeton: Princeton University Press; 1973.

Palis Jr J, de Melo W. Geometric Theory of Dynamical Systems, An Introduction. New York: Springer; 1982. translated by A. K. Manning edition.

Pikovski AS, Rabinovich MI, Trakhtengerts VY. Onset of stochasticity in decay confinement of parametric instability. J Exp Theor Phys 1978;47: 715–719.

Rabinovich M. Stochastic self-oscillations and turbulence. Usp Fiz Nauk 1978;125:123–168.

Robinson C. Dynamical Systems: Stability, Symbolic Dynamics and Chaos. Florida: CRC Press; 1999.

Shilnikov LP. A case of the existence of a denumerable set of periodic motions. Sov Math Dokl 1965;6:163–166.

Shilnikov LP. The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus. Sov Math Dokl 1967;8:54–58.

Shilnikov LP. A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type. Math USSR Sbornik 1970;10:91–102.

Smale S. Diffeomorphisms with many periodic points, Chapter Diff. Combin. Topology. Princeton: Princeton University Press; 1963, pp. 63–86.

Sommerfeld A. Beitrage zum dynamischen ausbau der festigkeitslehre. Z Verein deutscher Ingr 1902;46:391–394.

Sprott J. Some simple chaotic flows. Phys Rev E 1994;50:R647–R650.

Wang X, Chen G. Constructing a chaotic system with any number of equilibria. Nonlinear Dyn 2013;71:429–436.

Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed. New York: Springer; 2003.

Williams RF. Lorenz knots are prime. Ergod Th Dynam Sys 1984; 4:147–163.

Zhang X, Chen G. Polynomial maps with hidden complex dynamics. Discrete Contin Dyn Syst-B 2019;24:2941–2954.

Zhang X, Shi Y. Coupled-expanding maps for irreducible transition matrices. Int J Bifurcation Chaos 2010;20:3769–3783.

Zhang X, Shi Y, Chen G. Some properties of coupled-expanding maps in compact sets. Proc Amer Math Soc. 2013;141:585–595.