A Geometric Criterion for the Existence of Chaos Based on Periodic Orbits in Continuous-Time Autonomous Systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bertozzi AL. Heteroclinic orbits and chaotic dynamics in planar fluid flows. SIAM J Math Anal 1988;19:1271–1294.
Birman JS, Williams RF. Knotted periodic orbits in dynamical systems-1 Lorenz’s equations. Topology 1983;22:47–82.
Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N, Leonov G, Prasad A. Hidden attractors in dynamical systems. Phys Rep 2016;637: 1–50.
Jafari S, Pham V-T, Moghtadaei S, Kingni S. The relationship between chaotic maps and some chaotic systems with hidden attractors. Int J Bifurcation Chaos 2016;26(8 pages):1650211.
Jafari S, Sprott J, Nazarimehr F. Recent new examples of hidden attractors. Eur Phys J Special Topics 2015;224:1469–1476.
Jafari J, Sprott J, Pham V-T, Li CB. Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn 2016;86:1349–1358.
Jiang H, Liu Y, Wei Z, Zhang L. Hidden chaotic attractors in a class of two-dimensional maps. Nonlinear Dyn 2016;85:2719–2727.
Leonov G, Kuznetsov N. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurcation Chaos 2013;23(69 pages):1330002.
Leonov G, Kuznetsov N. On differences and similarities in the analysis of Lorenz, Chen, and Lu systems. Appl Math Comput 2015;256:334–343.
Leonov G, Kuznetsov N, Vagaitsev V. Localization of hidden Chua’s attractors. Phys Lett A 2011;375:2230–2233.
Lü J, Chen G. Generating multiscroll chaotic attractors: Theories, methods and applications. Int J Bifurcation Chaos 2006;16:775–858.
Melnikov VK. On the stability of the center for time periodic perturbations. Trans Moscow Math Soc 1963;12:1–57.
Mihajlovic N, van Veggel AA, van de Wouw N, Nijmeijer H. Analysis of frictin induced limit cycling in an experimental drill string system. J Dyn Syst Meas Control 2004;126:709–720.
Molaie M, Jafari S, Sprott J, Golpayegani M. Simple chaotic flows with one stable equilibrium. Int J Bifurcation Chaos 2013;23(7 pages):1350188.
Moser J. Stable and Random Motions in Dynamical Systems. Princeton: Princeton University Press; 1973.
Palis Jr J, de Melo W. Geometric Theory of Dynamical Systems, An Introduction. New York: Springer; 1982. translated by A. K. Manning edition.
Pikovski AS, Rabinovich MI, Trakhtengerts VY. Onset of stochasticity in decay confinement of parametric instability. J Exp Theor Phys 1978;47: 715–719.
Robinson C. Dynamical Systems: Stability, Symbolic Dynamics and Chaos. Florida: CRC Press; 1999.
Shilnikov LP. A case of the existence of a denumerable set of periodic motions. Sov Math Dokl 1965;6:163–166.
Shilnikov LP. The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus. Sov Math Dokl 1967;8:54–58.
Shilnikov LP. A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type. Math USSR Sbornik 1970;10:91–102.
Smale S. Diffeomorphisms with many periodic points, Chapter Diff. Combin. Topology. Princeton: Princeton University Press; 1963, pp. 63–86.
Sommerfeld A. Beitrage zum dynamischen ausbau der festigkeitslehre. Z Verein deutscher Ingr 1902;46:391–394.
Wang X, Chen G. Constructing a chaotic system with any number of equilibria. Nonlinear Dyn 2013;71:429–436.
Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed. New York: Springer; 2003.
Zhang X, Chen G. Polynomial maps with hidden complex dynamics. Discrete Contin Dyn Syst-B 2019;24:2941–2954.
Zhang X, Shi Y. Coupled-expanding maps for irreducible transition matrices. Int J Bifurcation Chaos 2010;20:3769–3783.