A Generalization of Boyd’s Interpolation Theorem

Acta Mathematica Scientia - Tập 41 - Trang 1263-1274 - 2021
Kwok-Pun Ho1
1Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, China

Tóm tắt

Boyd’s interpolation theorem for quasilinear operators is generalized in this paper, which gives a generalization for both the Marcinkiewicz interpolation theorem and Boyd’s interpolation theorem. By using this new interpolation theorem, we study the spherical fractional maximal functions and the fractional maximal commutators on rearrangement-invariant quasi-Banach function spaces. In particular, we obtain the mapping properties of the spherical fractional maximal functions and the fractional maximal commutators on generalized Lorentz spaces.

Tài liệu tham khảo

Agora E, Antezanna J, Carro M, Soria J. Lorentz-Shimogaki and Boyd theorems for weighted Lorentz spaces. J London Math Soc, 2014, 89: 321–336 Ariño M, Muckenhoupt B. Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions. Trans Amer Math Soc, 1990, 320: 727–735 Bennett C, Rudnick K. On Lorentz-Zygmund spaces. Dissert Math, 1980, 175: 1–72 Bennett C, Sharpley R. Interpolations of Operators. New York: Academic Press, 1988 Bergh J, Löfström J. Interpolation Spaces. Springer-Verlag, 1976 Boyd D. A class of operators on Lorentz spaces M(ϕ). Canad J Math, 1967, 19: 839–841 Boyd D. Indices of function spaces and relationship to interpolation. Canad J Math, 1969, 21: 1245–1254 Calderón A. Spaces between L1 and L∞ and the theorem of Marcinkiewicz. Studia Math, 1964, 26: 113–190 Carro M, García del Amo A, Soria J. Weak-type weights and normable Lorentz spaces. Proc Amer Math Soc, 1996, 124: 849–857 Carro M, Soria J. Weighted Lorentz space and the Hardy operator. J Funct Anal, 1993, 112: 480–494 Cwikel M. A counter example in nonlinear interpolation. Proc Amer Math Soc, 1977, 62: 62–66 Cwikel M, Kamińska A, Maligranda L, Pick L. Are generalized Lorentz “space” really spaces?. Proc Amer Math Soc, 2004, 132: 3615–3625 Edmunds D E, Evans W D. Hardy Operators, Function Spaces and Embeddings. Springer, 2004 Heikkinen T, Kinnunen J, Korvenpãã J, Tuominen H. Regularity of the local fractional maximal function. Ark Mat, 2015, 53: 127–154 Guliyev V, Deringoz F, Hasanov S. Fractional maximal function and its commutators on Orlicz spaces. Anal Math Phys, 2019, 9: 165–179 Ho K-P. Fourier integrals and Sobolev embedding on rearrangement invariant quasi-Banach function spaces. Ann Acad Sci Fenn Math, 2016, 41: 897–922 Ho K-P. Hardy’s inequalities on Hardy spaces. Proc Japan Acad Ser A Math Sci, 2016, 92: 125–130 Ho K-P. Fourier type transforms on rearrangement-invariant quasi-Banach function spaces. Glasgow Math J, 2019, 61: 231–248 Ho K-P. Interpolation of sublinear operators which map into Riesz spaces and applications. Proc Amer Math Soc, 2019, 147: 3479–3492 Ho K-P. Sublinear operators on radial rearrangement-invariant quasi-Banach function spaces. Acta Math Hungar, 2020, 160: 88–100 Ho K-P. Martingale transforms and fractional integrals on rearrangement-invariant martingale Hardy spaces. Period Math Hung, 2020, 81: 159–173. https://doi.org/10.1007/s10998-020-00318-1 Ho K-P. Linear operators, Fourier integral operators and k-plane transforms on rearrangement-invariant quasi-Banach function spaces. Positivity, 2021, 25: 73–96. https://doi.org/10.1007/s11117-020-00750-0 Kalton N, Peck N, Roberts J. An F-space sampler, London Mathematical Society//Lecture Note Series, 89. Cambridge University Press, 1984 Lorentz G G. On the theory of spaces Γ. Pacific J Math, 1951, 1: 411–429 Montgomery-Smith S. The Hardy operator and Boyd indices, Interaction between Functional analysis, Harmonic analysis, and Probability. Marcel Dekker, Inc, 1996 Sawyer E. Boundedness of classical operators on classical Lorentz spaces. Studia Math, 1990, 96: 145–158 Schlag W, Sogge C. Local smoothing estimates related to the circular maximal theorem. Math Res Lett, 1997, 4: 1–15 Stein E. Maximal function. I. Spherical means. Proc Nat Acad Sci USA, 1976, 73: 2174–2175 Triebel H. Interpolation Theory, Function Spaces, Differential Operators. North-Holland, 1978 Wang G, Yang J, Chen W. The endpoint estimate for fourier integral operators. Acta Mathematica Scientia, 2021, 41B(2): 426–436