A General Framework for Localization of Classical Waves: II. Random Media
Tóm tắt
We study localization of classical waves in random media in the general framework introduced in Part I of this work. This framework allows for two random coefficients, encompasses acoustic waves with random position dependent compressibility and mass density, elastic waves with random position dependent Lamé moduli and mass density, electromagnetic waves with random position dependent magnetic permeability and dielectric constant, and allows for anisotropy. We show exponential localization (Anderson localization) and strong Hilbert–Schmidt dynamical localization for random perturbations of periodic media with a spectral gap.
Tài liệu tham khảo
Aizenman, M. and Molchanov, S.: Localization at large disorder and extreme energies: an elementary derivation, Comm. Math. Phys. 157 (1993), 245–278.
Aizenman, M., Schenker, J., Friedrich, R. and Hundertmark, D.: Finite-volume criteria for Anderson localization, Comm. Math. Phys. 224 (2001), 219–253.
Aizenman, M., Elgart, A., Naboko, S., Schenker, J. and Stolz, G.: In preparation.
Carmona, R. and Lacroix, J.: Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, 1990.
Combes, J. M. and Hislop, P. D.: Localization for some continuous, random Hamiltonian in d-dimension, J. Funct. Anal. 124 (1994), 149–180.
Combes, J. M., Hislop, P. D. and Tip, A.: Band edge localization and the density of states for acoustic and electromagnetic waves in random media, Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), 381–428.
Damanik, D. and Stollman, P.: Multi-scale analysis implies strong dynamical localization, Geom. Funct. Anal. 11 (2001), 11–29.
Figotin, A. and Klein, A.: Localization phenomenon in gaps of the spectrum of random lattice operators, J. Statist. Phys. 75 (1994), 997–1021.
Figotin, A. and Klein, A.: Localization of electromagnetic and acoustic waves in random media. Lattice Model, J. Statist. Phys. 76 (1994), 985–1003.
Figotin, A. and Klein, A.: Localization of classical waves I: Acoustic waves, Comm. Math. Phys. 180 (1996), 439–482.
Figotin, A. and Klein, A.: Localization of classical waves II: Electromagnetic waves, Comm. Math. Phys. 184 (1997), 411–441.
Figotin, A. and Klein, A.: Localized classical waves created by defects, J. Statist. Phys. 86 (1997), 165–177.
Figotin, A. and Klein, A.: Midgap defect modes in dielectric and acoustic media, SIAM J. Appl. Math. 58 (1998), 1748–1773.
Figotin, A. and Klein, A.: Localization of light in lossless inhomogeneous dielectrics, J. Opt. Soc. Amer. A 15 (1998), 1423–1435.
Germinet, F. and De Bièvre, S.: Dynamical localization for discrete and continuous random Schrödinger operators, Comm. Math. Phys. 194 (1998), 323–341.
Germinet, F. and Klein, A.: Bootstrap multiscale analysis and localization in random media, Comm. Math. Phys. 222 (2001), 415–448.
Germinet, F. and Klein, A.: Decay of operator-valued kernels of functions of Schrödinger and other operators, Proc. Amer. Math. Soc. 131 (2003), 911–920.
Germinet, F. and Klein, A.: A characterization of the Anderson metal-insulator transport transition, Duke Math. J., to appear.
Germinet, F. and Klein, A.: Explicit finite volume criteria for localization in continuous random media and applications, Geom. Funct. Anal., to appear.
Germinet, F. and Klein, A.: High disorder localization for random Schrödinger operators through explicit finite volume criteria, Markov Process. Related Fields, to appear.
Germinet, F. and Klein, A.: The Anderson metal-insulator transport transition, Contemp. Math., to appear.
Holden, H. and Martinelli, F.: On absence of diffusion near the bottom of the spectrum for a random Schrödinger operator, Comm. Math. Phys. 93 (1984), 197–217.
Klein, A.: Localization of light in randomized periodic media, In: J.-P. Fouque (ed.), Diffuse Waves in Complex Media, Kluwer, Dordrecht, 1999, pp. 73–92.
Klein, A. and Koines, A.: A general framework for localization of classical waves: I. Inhomogeneous media and defect eigenmodes, Math. Phys. Anal. Geom. 4 (2001), 97–130.
Klein, A., Koines, A. and Seifert, M.: Generalized eigenfunctions for waves in inhomogeneous media, J. Funct. Anal. 190 (2002), 255–291.
Klopp, F.: Localization for continuous random Schrödinger operators, Comm. Math. Phys. 167 (1995), 553–569.
Klopp, F.: Internal Lifshits tails for random perturbations of periodic Schrödinger operators, Duke Math. J. 98 (1999), 335–396.
Klopp F.: Weak disorder localization and Lifshitz tails: continuous Hamiltonians, Ann. Inst. H. Poincaré 3 (2002), 711–737.
Kirsch, W. and Martinelli, F.: On the ergodic properties of the spectrum of general random operators, J. Reine Angew. Math. 334 (1982), 141–156.
Kirsch, W. and Martinelli, F.: On the spectrum of Schrödinger operators with a random potential, Comm. Math. Phys. 85 (1982), 329–350.
Kirsch, W., Stolz, G. and Stollman, P.: Localization for random perturbations of periodic Schrödinger operators, Random Oper. Stochastic Equations 6 (1998), 241–268.
Najar, H.: Asymptotic of the integrated density of states of random acoustic operators, C.R. Acad. Sci. Paris Sér. I Math. 333 (2001), 191–194.
Pastur, L. and Figotin, A.: Spectra of Random and Almost-Periodic Operators, Springer-Verlag, Heidelberg, 1992.
Schulenberger, J. and Wilcox, C.: Coerciveness inequalities for nonelliptic systems of partial differential equations, Arch. Rational Mech. Anal. 88 (1971), 229–305.
Wiersma, D., Bartolini, P., Lagendijk, A. and Righini, R.: Localization of light in a disordered medium, Nature 390 (1997), 671–673.
Wilcox, C.: Wave operators and asymptotic solutions of wave propagation problems of classical physics, Arch. Rational Mech. Anal. 22 (1966), 37–78.