A Game Changer: A Multifunctional Perovskite Exhibiting Giant Ferroelectricity and Narrow Bandgap with Potential Application in a Truly Monolithic Multienergy Harvester or Sensor

Advanced Materials - Tập 29 Số 29 - 2017
Yang Bai1, Pavel Tofel2, Jaakko Palosaari1, Heli Jantunen1, Jari Juuti1
1Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, FI-90014 Oulu, Finland
2CEITEC – Central European Institute of Technology Technicka 3058/10 CZ‐61600 Brno Czech Republic

Tóm tắt

An ABO3‐type perovskite solid‐solution, (K0.5Na0.5)NbO3 (KNN) doped with 2 mol% Ba(Ni0.5Nb0.5)O3−δ (BNNO) is reported. Such a composition yields a much narrower bandgap (≈1.6 eV) compared to the parental composition—pure KNN—and other widely used piezoelectric and pyroelectric materials (e.g., Pb(Zr,Ti)O3, BaTiO3). Meanwhile, it exhibits the same large piezoelectric coefficient as that of KNN (≈100 pC N−1) and a much larger pyroelectric coefficient (≈130 µC m−2 K−1) compared to the previously reported narrow‐bandgap material (KNbO3)1−x‐BNNOx. The unique combination of these excellent ferroelectric and optical properties opens the door to the development of multisource energy harvesting or multifunctional sensing devices for the simultaneous and efficient conversion of solar, thermal, and kinetic energies into electricity in a single material. Individual and comprehensive characterizations of the optical, ferroelectric, piezoelectric, pyroelectric, and photovoltaic properties are investigated with single and coexisting energy sources. No degrading interaction between ferroelectric and photovoltaic behaviors is observed. This composition may fundamentally change the working principles of state‐of‐the‐art hybrid energy harvesters and sensors, and thus significantly increases the unit‐volume energy conversion efficiency and reliability of energy harvesters in ambient environments.

Từ khóa


Tài liệu tham khảo

10.1109/SURV.2011.060710.00094

10.1021/ja810158x

10.1002/adma.201003696

Yang B., 2010, J. Micro/Nanolithogr., MEMS, MOEMS, 9, 10

10.1021/nn305247x

10.1109/JPROC.2014.2355872

10.1002/adma.201303570

10.1063/1.4974735

10.1007/s10971-011-2582-9

10.1038/nature12622

10.1016/j.jmst.2013.10.022

10.1002/anie.201308719

10.1039/C3EE42454E

Wang F. G., 2014, Appl. Phys. Lett., 104, 4

10.1063/1.126786

10.1109/TUFFC.2009.1215

Sabat R. G., 2007, J. Appl. Phys., 101, 7

10.1016/j.jeurceramsoc.2004.11.022

10.1111/j.1551-2916.2005.00347.x

Fluckiger U., 1977, Am. Ceram. Soc. Bull., 56, 575

10.1016/j.matchemphys.2015.05.017

10.1088/0960-1317/14/5/009

10.1021/acs.jpclett.6b00527

10.1021/jz100293z

10.1111/j.1551-2916.2012.05430.x

Wang F. G., 2016, Nat. Commun., 7, 7

10.1002/adma.201501629