A Framework for Characterizing Structural Uncertainty in Large-Eddy Simulation Closures

Applied Scientific Research - Tập 100 - Trang 341-363 - 2017
Lluís Jofre1, Stefan P. Domino2, Gianluca Iaccarino1
1Center for Turbulence Research, Stanford University, Stanford, USA
2Computational Thermal and Fluid Mechanics, Sandia National Laboratories, Albuquerque, USA

Tóm tắt

Motivated by the sizable increase of available computing resources, large-eddy simulation of complex turbulent flow is becoming increasingly popular. The underlying filtering operation of this approach enables to represent only large-scale motions. However, the small-scale fluctuations and their effects on the resolved flow field require additional modeling. As a consequence, the assumptions made in the closure formulations become potential sources of incertitude that can impact the quantities of interest. The objective of this work is to introduce a framework for the systematic estimation of structural uncertainty in large-eddy simulation closures. In particular, the methodology proposed is independent of the initial model form, computationally efficient, and suitable to general flow solvers. The approach is based on introducing controlled perturbations to the turbulent stress tensor in terms of magnitude, shape and orientation, such that propagation of their effects can be assessed. The framework is rigorously described, and physically plausible bounds for the perturbations are proposed. As a means to test its performance, a comprehensive set of numerical experiments are reported for which physical interpretation of the deviations in the quantities of interest are discussed.

Tài liệu tham khảo

Hermeth, S., Staffelbach, G., Gicquel, L.Y.M., Poinsot, T.: LES Evaluation of the effects of equivalence ratio fluctuations on the dynamic flame response in a real gas turbine combustion chamber. Proc. Combust. Inst. 34, 3165–3173 (2013) Bulat, G., Fedina, E., Fureby, C., Stopper, U.: Reacting flow in an industrial gas turbine combustor: LES and experimental analysis. Proc. Combust. Inst. 35, 3175–3183 (2015) Masquelet, M., Yan, J., Dord, A., Laskowski, G., Shunn, L., Jofre, L., Iaccarino, G.: Uncertainty quantification in large eddy simulations of a rich-dome aviation gas turbine. In: Proceeding of the ASME Turbo Expo 2017, GT2017-64835, pp 1–11 (2017) Ang, J., Evans, K., Geist, A., Heroux, M., Hovland, P., Marques, O., Curfman, L., Ng, E., Wild, S.: Workshop on Extreme-Scale Solvers: Transition to Future Architectures. Tech. Rep., U.S, Department of Energy, Office of Advanced Scientific Computing Research (2012) Ghosal, S.: An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys. 125, 187–206 (1996) Meyers, J., Geurts, B.J., Baelmans, M.: Database analysis of errors in large-eddy simulation. Phys. Fluids 15, 2740 (2003) Meldi, M., Lucor, D., Sagaut, P.: Is the Smagorinsky coefficient sensitive to uncertainty in the form of the energy spectrum? Phys. Fluids 23, 125,109 (2011) Meyers, J., Sagaut, P.: Evaluation of Smagorinsky variants in large-eddy simulations of wall-resolved plane channel flows. Phys. Fluids 19, 095,105 (2007a) Meyers, J., Sagaut, P.: Is plane-channel flow a friendly case for the testing of large-eddy simulation subgrid-scale models? Phys. Fluids 19, 048,105 (2007b) Dunn, M.C., Shotorban, B., Frendi, A.: Uncertainty quantification of turbulence model coefficients via latin hypercube sampling method. J. Fluids. Eng. 133, 041,402 (2011) Lucor, D., Meyers, J., Sagaut, P.: Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos. J. Fluid. Mech. 585, 255–280 (2007) Cheung, S., Oliver, T., Prudencion, E., Pridhomme, S., Moser, R.: Bayesian uncertainty analysis with applications to turbulence modeling. Reliab. Eng. Syst. Saf. 96, 1137–1149 (2011) Völker, S., Moser, R., Venugopal, P.: Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data. Phys. Fluids 14, 3675–3691 (2002) Phillips, N.A.: Models for weather prediction. Annu. Rev. Fluid. Mech. 2, 251–292 (1970) Leith, C.E.: Objective methods for weather prediction. Annu. Rev. Fluid. Mech. 10, 107–128 (1978) Gorlé, C., Iaccarino, G.: A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations. Phys. Fluids 25, 055,105 (2013) Emory, M., Larsson, J., Iaccarino, G.: Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures. Phys. Fluids 25, 110,822 (2013) Vasilyev, O.V., Lund, T.S., Moin, P.: A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146, 82–104 (1998) Marsden, A.L., Vasilyev, O.V., Moin, P.: Construction of commutative filters for LES on unstructured meshes. J. Comput. Phys. 175, 584–603 (2002) Leonard, A.: Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. A 18, 237–248 (1974) Lund, T.S.: The use of explicit filters in large eddy simulation. Comput. Math. Appl. 46, 603–616 (2003) Carati, D., Winckelmans, G.S., Jeanmart, H.: On the modelling of the subgrid-scale and filtered-scale stress tensors in alrge-eddy simulation. J. Fluid. Mech. 441, 119–138 (2001) Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flow. Annu. Rev. Fluid. Mech. 16, 2150 (1984) Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid. Mech. 91, 1–16 (1979) Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid scale models for large eddy simulation. In: Proceeding of the AIAA 13th Fluid & Plasma Dynamics Conference, pp 1–10 (1980) Zang, Y., Street, R.L., Koseff, J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids. A 5, 3186–3195 (1993) Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid. Mech. 32, 1–32 (2000) Smagorinsky, J.: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather. Rev. 91, 99–164 (1963) Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids. A 3, 1760–1765 (1991) Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient. Flow. Turbul. Combust. 62, 183–200 (1999) Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23, 085,106 (2011) Rozema, W., Bae, H.J., Moin, P., Verstappen, R.: Minimum-dissipation models for large-eddy simulation. Phys. Fluids 27, 085,107 (2015) Jofre, L., Lehmkuhl, O., Ventosa, J., Trias, F.X., Oliva, A.: Conservation properties of unstructured finite-volume mesh schemes for the Navier-Stokes equations. Numer. Heat. Transfer, Part. B 65, 53–79 (2014) Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys. Fluids 29, 2152–2164 (1986) Moin, P., Squires, K., Cabot, W., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids. A 3, 2746–2757 (1991) Schumann, U.: Realizability of Reynolds-stress turbulence models. Phys. Fluids 20, 721–725 (1977) Vreman, B., Geurts, B., Kuerten, H.: Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid. Mech. 278, 351–362 (1994) Lumley, J.L., Newman, G.: The return to isotropy of homogeneous turbulence. J. Fluid. Mech. 82, 161–178 (1977) Choi, K.S., Lumley, J.L.: The return to isotropy of homogeneous turbulence. J. Fluid. Mech. 436, 59–84 (2001) Banerjee, S., Krahl, R., Durst, F., Zenger, C.: Presentation of anisotropy properties of turbulence, invariants versus eigenvalues approaches. J. Turbul. 8, 1–27 (2007) Kindlmann, G.: Superquadric tensor glyphs. In: Proceeding of the 6th Joint Eurographics-IEEE TCVG Conference, pp 147–154 (2004) Teem: Tools to process and visualize scientific data and images. http://teem.sourceforge.net (2003) Stolz, S., Adams, A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 1699–1701 (1999) Pope, S.B.: Turbulent Flows. Cambridge University Press (2000) Piomelli, U., Cabot, W., Moin, P., Lee, S.: Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids 3, 1766–1771 (1991) Lasserre, J.B.: A trace inequality for matrix product. IEEE Trans. Autom. Control. 40, 1500–1501 (1995) Lund, T.S., Ghosal, S., Moin, P.: Numerical experiments with highly variable eddy viscosity model. Eng. Appl. LES 162, 7–11 (1993) Domino, S.P.: Sierra low mach module: Nalu theory manual 1.0. Tech. Rep. SAND2015-3107w, Sandia National Laboratories, Unclassified Unlimited Release (UUR). https://github.com/NaluCFD/NaluDoc (2015) Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to R e τ = 590. Phys. Fluids 11, 943–945 (1999) Chapman, D., Kuhn, G.: The limiting behavior of turbulence near a wall. J. Fluid. Mech. 170, 265–292 (1986) Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. Cambridge University Press (2007) Gullbrand, J., Chow, F.K.: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid. Mech. 495, 323–341 (2003)