A Fractional p-Laplacian Problem with Multiple Critical Hardy–Sobolev Nonlinearities

Ronaldo B. Assunção1, Jeferson C. Silva1, Olı́mpio H. Miyagaki2
1Departamento de Matemática, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
2Departamento de Matemática, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdellaoui, B., Peral, I., Primo, A.: A remark on the fractional Hardy inequality with a remainder term. C. R. Math. Acad. Sci. Paris 352, 299–303 (2014)

C. O. Alves and O. H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in $$\mathbb{R}^{N}$$ via penalization method, Calc. Var. Partial Differential Equations, 55 (2016), pp. Art. 47, 19

Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Functional Analysis 14, 349–381 (1973)

B. Barrios, M. Medina, and I. Peral, Some remarks on the solvability of nonlocal elliptic problems with the Hardy potential, Commun. Contemp. Math., 16 (2014), pp. 1350046, 29

L. Brasco, S. Mosconi, and M. Squassina, Optimal decay of extremals for the fractional Sobolev inequality, Calc. Var. Partial Differential Equations, 55 (2016), pp. Art. 23, 32

Brasco, L., Squassina, M., Yang, Y.: Global compactness results for nonlocal problems. Discrete Contin. Dyn. Syst. Ser. S 11, 391–424 (2018)

H. Brézis and E. a. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), pp. 486–490

Bucur, C., Valdinoci, E.: Nonlocal diffusion and applications. Lecture Notes of the Unione Matematica Italiana, Springer, [Cham], vol. 20. Unione Matematica Italiana, Bologna (2016)

Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32, 1245–1260 (2007)

W. Chen, Fractional elliptic problems with two critical Sobolov-Hardy exponents, Electron. J. Differential Equations, (2018), pp. Paper No. 22, 12

Chen, W., Mosconi, S., Squassina, M.: Nonlocal problems with critical Hardy nonlinearity. J. Funct. Anal. 275, 3065–3114 (2018)

Cotsiolis, A., Tavoularis, N.K.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295, 225–236 (2004)

A. Di Castro, T. Kuusi, and G. Palatucci, Local behavior of fractional pminimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), pp. 1279–1299

Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

S. Dipierro, M. Medina, and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $$\mathbb{R}^{N}$$, vol. 15 of Appunti Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], Edizioni della Normale, Pisa, 2017

Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

R. Filippucci, P. Pucci, and F. Robert, On a p-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl. (9), 91 (2009), pp. 156–177

A. Fiscella, G. Molica Bisci, and R. Servadei, Bifurcation and multiplicity results for critical nonlocal fractional Laplacian problems, Bull. Sci. Math., 140 (2016), pp. 14–35

Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)

G. Franzina and G. Palatucci, Fractional p-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), pp. 373–386

Ghoussoub, N., Shakerian, S.: Borderline variational problems involving fractional Laplacians and critical singularities. Adv. Nonlinear Stud. 15, 527–555 (2015)

Goyal, S.: On the eigenvalues and Fučik spectrum of p-fractional Hardy-Sobolev operator with weight function. Appl. Anal. 97, 633–658 (2018)

Iannizzotto, A., Liu, S., Perera, K., Squassina, M.: Existence results for fractional p-Laplacian problems via Morse theory. Adv. Calc. Var. 9, 101–125 (2016)

Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hšölder regularity for the fractional p-Laplacian. Rev. Mat. Iberoam. 32, 1353–1392 (2016)

Iannizzotto, A., Mosconi, S., Squassina, M.: A note on global regularity for the weak solutions of fractional p-Laplacian equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27, 15–24 (2016)

Kavian, O.: Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 13. Springer-Verlag, Paris (1993)

Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differential Equations 49, 795–826 (2014)

S. A. Marano and S. J. N. Mosconi, Asymptotics for optimizers of the fractional hardy–sobolev inequality, Communications in Contemporary Mathematics, 0 (0), p. 1850028

G. Molica Bisci, V. D. Radulescu, and R. Servadei, Variational methods for nonlocal fractional problems, vol. 162 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2016. With a foreword by Jean Mawhin

Palatucci, G., Pisante, A.: A global compactness type result for Palais-Smale sequences in fractional Sobolev spaces. Nonlinear Anal. 117, 1–7 (2015)

Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut., 28 (2015), pp. 655–676.

Xiang, M., Zhang, B., Zhang, X.: A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent in $$\mathbb{R}^{N}$$. Adv. Nonlinear Stud. 17, 611–640 (2017)

Yang, J., Wu, F.: Doubly critical problems involving fractional Laplacians in $$\mathbb{R}^{N}$$. Adv. Nonlinear Stud. 17, 677–690 (2017)