A Formula for the Number of Elliptic Curves with Exceptional Primes
Tóm tắt
We prove a conjecture of Duke on the number of elliptic curves over the rationals of bounded height which have exceptional primes.
Tài liệu tham khảo
citation_journal_title=Invent. Math.; citation_title=The average rank of elliptic curves I; citation_author=A. Brumer; citation_volume=109; citation_publication_date=1992; citation_pages=445-472; citation_id=CR1
citation_journal_title=CR Acad. Sci. Paris Série I; citation_title=Elliptic curves with no exceptional primes; citation_author=W. Duke; citation_volume=325; citation_publication_date=1997; citation_pages=813-818; citation_id=CR2
Hardy, G. H. and Wright, E. M.: An Introduction to the Theory of Numbers, 4th edn. Oxford Univ. Press, 1960.
citation_title=Beyond the Quartic Equation; citation_publication_date=1996; citation_id=CR4; citation_author=R. King; citation_publisher=Birkhäuser
citation_title=Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree; citation_publication_date=1956; citation_id=CR5; citation_author=F. Klein; citation_publisher=Dover
citation_title=Algebraic Number Theory; citation_publication_date=1986; citation_id=CR6; citation_author=S. Lang; citation_publisher=Springer
citation_journal_title=Bull. London Math. Soc.; citation_title=Galois properties of division fields of elliptic curves; citation_author=D. Masser, G. Wüstholz; citation_volume=25; citation_publication_date=1993; citation_pages=247-254; citation_id=CR7
citation_title=Rational points on modular curves; citation_inbook_title=Lecture Notes in Math.; citation_publication_date=1977; citation_pages=107-148; citation_id=CR8; citation_author=B. Mazur; citation_publisher=Springer
citation_journal_title=IHES; citation_title=Modular curves and the Eisenstein ideal; citation_author=B. Mazur; citation_volume=47; citation_publication_date=1977; citation_pages=33-186; citation_id=CR9
citation_journal_title=Invent. Math.; citation_title=Rational isogenies of prime degree; citation_author=B. Mazur; citation_volume=44; citation_publication_date=1978; citation_pages=129-162; citation_id=CR10
citation_title=Introduction to Analytic Number Theory; citation_publication_date=1988; citation_id=CR11; citation_author=A. Postnikov; citation_publisher=Amer. Math. Soc.
citation_title=
ℓ
; citation_publication_date=1968; citation_id=CR12; citation_author=J.-P. Serre; citation_publisher=Benjamin
citation_journal_title=Invent. Math.; citation_title=Propriétés galoisiennes des points d'ordre fini des courbes elliptiques; citation_author=J.-P. Serre; citation_volume=15; citation_publication_date=1972; citation_pages=123-201; citation_id=CR13
citation_title=Lectures on the Mordell-Weil Theorem; citation_publication_date=1989; citation_id=CR14; citation_author=J.-P. Serre; citation_publisher=Vieweg
citation_title=Introduction to the Theory of Numbers; citation_publication_date=1983; citation_id=CR15; citation_author=H. Shapiro; citation_publisher=Wiley
citation_title=The Arithmetic of Elliptic Curves; citation_publication_date=1986; citation_id=CR16; citation_author=J. Silverman; citation_publisher=Springer