Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cảm biến huỳnh quang cho ion Cu2+ với độ chọn lọc và độ nhạy cao dựa trên ICT và PET
Tóm tắt
Một cảm biến huỳnh quang mới (L) dựa trên anhydride 1,8-naphthalic đã được phát triển có khả năng phát hiện chọn lọc ion Cu2+ trong môi trường CH3CN so với các ion kim loại khác tại bước sóng 408 nm trong quang phổ huỳnh quang. Khi ion Cu2+ được thêm vào L, L đã thể hiện sự tắt huỳnh quang bằng cách phối hợp với Cu2+. Một băng hấp thụ mới đã được tìm thấy tại vị trí 290 nm, cũng như băng hấp thụ chuyển đỏ từ 356 nm đến 376 nm trong quang phổ UV-vis, điều này có thể được gán cho sự chuyển điện tích nội phân tử (ICT). Trong khi đó, tổ hợp L-Cu2+ cho thấy sự tắt huỳnh quang thông qua sự truyền electron được kích thích bởi ánh sáng (PET). Tỷ lệ phức tạp được đề xuất là 1:1, được xác định thông qua đồ thị Job, chuẩn độ huỳnh quang và chuẩn độ 1H NMR. Giới hạn phát hiện là 9.1 × 10−8 mol·L−1, là mức độ thỏa mãn để phát hiện Cu2+ trong thang micromolar. Hình học phân tử tương ứng, năng lượng orbital và sự đóng góp electron của cảm biến L đã được tính toán bằng gói chương trình DMol3 sử dụng lý thuyết hàm mật độ.
Từ khóa
#cảm biến huỳnh quang #ion Cu2+ #độ chọn lọc cao #độ nhạy cao #ICT #PETTài liệu tham khảo
Muthuraj B, Deshmukh R, Trivedi V (2014) Highly selective sensor detects Cu2+ and endogenous NO gas in Living Cell. J Am Chem Soc 6:6562–6569
Udhayakumari D, Velmathi S (2014) Highly fluorescent sensor for copper (II) ion based on commercially available compounds and live cell imaging. Sensor Actuat B-Chem 198:285–293
Tapiero H, Townsend DM, Tew KD (2003) Trace elements in human physiology and pathology: copper. Biomed Pharmacother 57:386–398
Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230
Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper transporting ATPase. Nat Genet 3:7–13
Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5:327–337
Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214
Valentine JS, Hart PJ (2003) Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 100:3617–3622
Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749
Brown DR, Kozlowski H (2004) Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton T (13):1907–1917
Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health Part B 4:341–394
Gonzales APS, Firmino MA, Nomure CS, Rocha FRP, Oliveira PV, Gaubeur I (2009) Peat as a natural solid-phase for copper Preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry. Anal Chim Acta 636:198–204
Xu Z, Yoon J, Spring D (2010a) Fluorescent Chemosensors for Zn2+. Chem Soc Rev 39(6):1996–2006
Qian X, Xiao Y, Xu Y, Guo X, Qian J, Zhu W (2010) “Alive” dyes as fluorescent sensors: fluorophore, mechanism, receptor and images in living cells. Chem Commun 46:6418–6436
Liu Y, Lv X, Zhao Y, Chen M, Liu J, Wang P (2012) A Naphthalimide-rhodamine Ratiometric fluorescent sensor for Hg2+ based on fluorescence resonance energy transfer. Dyes Pigments 92:909–915
Duke R, Veale E, Pfeffer F, Kruger P, Gunnlaugsson T (2010) Colorimetric and fluorescent anion sensor: an overview of recent developments in the use of 1,8-Naphthalimide-based Chemosensors. Chem Soc Rev 39:3936–3953
Grabchev I, Staneva D, Dumas S, Chovelon J-M (2011) Metal ions and protons sensing properties of new fluorescent 4-N-Methylpiperazine-1,8-Naphthalime Determinated poly(propyleneamine) dendrimer. J Mol Struct 999:16–21
Salmon L, Thuery P, Riviere E, Ephritikhine M (2006) Synthesis, structure, and magnetic behavior of a series of Trinuclear Schiff Base complexes of 5f (UIV,ThIV) and 3d (CuII,ZnII) ions. Inorg Chem 45:83–93
Xu Y, Meng J, Meng L, Dong Y, Cheng Y, Zhu C (2010b) A highly selective fluorescence-based polymer sensor incorporating an (R,R)-salen moiety for Zn2+. Chem Eur J 16:898–903
Reddy TS, Reddy AR (2012) Synthesis and fluorescence study of 3-Aminoalkylamidonapthalimides. Photochem Photobiol A Chem 227:51–58
Liu CJ, Yang ZY (2015) Novel optical selective Chromone Schiff Base Chemosensor for Al3+ ion. J Lumin 158:172–175
Li ZQ, Zhou Y, Yin K, Yu Z, Li Y, Ren J (2014) A new fluorescence “turn-on” type Chemosensor for Fe3+ based on Naphthalimide and Coumarin. Dyes Pigments 105:7–11
] J. C. Qin, Z. Y. Yang (2015) A novel Ratiometric fluorescent sensor for detection of Fe3+ by rhodamine-Quinoline conjugate. J. Photoch Photobiol A 310:122–127
Wang GQ, Qin JC, Fan L, Li CR, Yang ZY (2016) A “turn-on” fluorescent sensor for highly selective recognition of Mg2+ based on new Schiff’s base derivative. J Photoch Photobiol A 314:29–34
Kim KB, You DM, Jeon JH, Kim JH, Kim C (2014a) A fluorescent and colorimetric Chemsensor for selective detection of Aluminium in aqueous solution. Tetrahedron Lett 55:1347–1352
Jiang XJ, Fu Y, Tang H (2014) A new highly selective fluorescent sensor for detection of Cd2+ and Hg2+ based on two different approaches in aqueous solution. Sensors Autuat B-Chem 190:844–850
Kim H, Kang J, Kim KB, Song EJ, Kim C (2014b) A highly selective Quinoline-based fluorescent sensor for Zn2+. Spectrochim Acta A Mol Biomol Spectrosc 118:883–887
Sung Hoon Kim, Seon-Yeong Gwon, Jin-Seok Bae, The synthesis and spectral properties of a stimuli-responsive D-π-a charge transfer dye. Spectrochim Acta A Mol Biomol Spectrosc, 2011, 78, 234–237
Son YA, Park J (2012) Rhodamine 6G based new fluorophore Chemosensor toward Hg2+. Textile Coloration and Finishing 24:158–164
Roy N, Dutta A, Mondal P (2015) A new turn-on fluorescent Chemosensor based on sensitive Schiff Base for Mn2+ ion. J Lumin 165:167–173