A Flexible Model for Time Series of Counts with Overdispersion or Underdispersion, Zero-Inflation and Heavy-Tailedness

Lianyong Qian1, Fukang Zhu2
1School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, People’s Republic of China
2School of Mathematics, Jilin University, Changchun, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Al-Osh, M.A., Alzaid, A.A.: First order integer-valued autoregressive (INAR(1)) process. J. Time Ser. Anal. 8, 261–275 (1987)

Castillo, J., Pérez-Casany, M.: Overdispersed and underdispersed Poisson generalizations. J. Stat. Plan. Inference 134, 486–500 (2005)

Christiou, V., Fokians, K.: Quasi-likelihood inference for negative binomial time series models. J. Time Ser. Anal. 35, 55–78 (2014)

Davis, R., Liu, H.: Theory and inference for a class of nonlinear models with application to time series of counts. Stat. Sin. 26, 1673–1707 (2016)

Ferland, R., Latour, A., Oraichi, D.: Interger-valued GARCH process. J. Time Ser. Anal. 27, 923–942 (2006)

Fokianos, K., Rahbek, A., Tjstheim, D.: Poisson autoregression. J. Am. Stat. Assoc. 104, 1430–1439 (2009)

Gonçalves, E., Mendes-Lopes, N., Silva, F.: Infinitely divisible distributions in integer-valued GARCH models. J. Time. Ser. Anal. 36, 503–527 (2015)

Gorgi, P.: Beta-negative binomial auto-regressions for mdelling integer-valued time series with extreme observations. J. Roy. Stat. Soc. B 82, 1325–1347 (2020)

Guikema, S.D., Coffelt, J.P.: A flexible count data regression model for risk analysis. Risk. Anal. 28, 213–223 (2008)

Huang, J., Zhu, F.: An alternative test for zero modification in the INAR(1) model with Poisson innovations. Commun. Stati. Simul. Comput. Forthcom. (2022). https://doi.org/10.1080/03610918.2020.1869987

Imoto, T.: A generalized Conway-Maxwell-Poisson distribution which includes the negative binomial distribution. Appl. Math. Comput. 247, 824–834 (2014)

Jazi, M.A., Jones, G., Lai, C.D.: First-order integer valued AR processes with zero inflated poisson innovations. J. Time Ser. Anal. 33, 954–963 (2005)

Piancastelli, L.S.C., Barreto-Souza, W.: Inferential aspects of the zero-inflated Poisson INAR(1) process. Appl. Math. Model. 74, 457–468 (2019)

Qian, L., Li, Q., Zhu, F.: Modelling heavy-tailedness in count time series. Appl. Math. Model. 82, 766–784 (2020)

Rao, C.R.: On discrete distribution arising out of methods of ascertainment. Sankhyā. Series A 27, 311–324 (1965)

Shmueli, G., Minka, T.P., Kadane, J.B., Borle, S., Boatwright, P.: A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution. J. R. Stat. Soc. Ser. C 54, 127–42 (2005)

Silva, M.E., Pereira, I., McCabe, B.: Bayesian outlier detection in non-Gaussian autoregressive time series. J. Time. Ser. Anal. 40, 631–648 (2019)

Silva, R.B., Barreto-Souza, W.: Flexible and robust mixed Poisson INGARCH models. J. Time. Ser. Anal. 40, 788–814 (2019)

Steutel, F.W., varn Harn, K.: Discrete analogues of self-decomposability and stability. Ann. Probab. 7, 893–899 (1979)

Weiß, C.H.: Modelling time series of counts with overdispersion. Stat. Method. Appl. 18, 507–519 (2009)

Weiß, C.H.: An Introduction to Discrete-Valued Time Series. John Wiley & Sons, Chichester (2018)

Weiß, C.H., Homburg, H., Puig, P.: Testing for zero inflation and overdispersion in INAR(1) models. Stat. Pap. 60, 473–498 (2019)

Yang, M., Cavanaugh, J.E., Zamba, G.K.D.: State-space models for count time series with excess zeros. Stat. Model. 15, 70–90 (2015)

Yang, M., Zamba, G.K.D., Cavanaugh, J.E.: Markov regression models for count time series with excess zeros: A partial likelihood approach. Stat. Methodol. 14, 26–38 (2013)

Zhu, F.: A negative binomial interger-valued GARCH model. J. Time. Ser. Anal. 32, 54–67 (2011)

Zhu, F.: Zero-inflated Poisson and negative binomial integer-valued GARCH models. J. Stat. Plan. Inference. 142, 826–839 (2012)

Zhu, F.: Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models. J. Math. Anal. Appl. 389, 58–71 (2012)

Zhu, F.: Modeling time series of counts with COM-Poisson INGARCH models. Math. Comput. Model. 56, 191–203 (2012)

Zhu, F., Liu, S., Shi, L.: Local influence analysis for Poisson autoregression with an application to stock transaction data. Stat. Neerl. 70, 4–25 (2016)

Zhu, F., Shi, L., Liu, S.: Influence diagnostics in log-linear integer-valued GARCH models. AStA Adv. Stat. Anal. 99, 311–335 (2015)

Zhu, R., Joe, H.: Modelling heavy-tailed count data using a generalised Poisson-inverse Gaussian family. Statist. Probab. Lett. 79, 1695–1703 (2009)

Zucchini, W., MacDonald, I.L., Langrock, R.(2009): Hidden Markov Models for Time Series: An Introduction Using R. Chapman & Hall/CRC