A First Experience of Space Radiation Monitoring in the Multi-Satellite Experiment of Moscow University in the Framework of the Universat-SOCRAT Project

Allerton Press - Tập 75 - Trang 676-683 - 2021
V. V. Bogomolov1,2, A. V. Bogomolov1, Yu. N. Dement’ev1, V. E. Eremeev1, Yu. K. Zaiko1, V. V. Kalegaev1, P. A. Klimov1, V. I. Osedlo1, M. I. Panasyuk1,2, V. L. Petrov1, O. Yu. Peretjat’ko1, M. V. Podzolko1, S. I. Svertilov1,2
1Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia
2Department of Physics, Moscow State University, Moscow, Russia

Tóm tắt

The Moscow University Universat-SOCRAT program is aimed at using small satellites to monitor space threats, such as radiation in near-earth space, electromagnetic transients, and potentially dangerous bodies of natural and artificial origins. The first stage of the program implementation began on July 5, 2019 as a result of the successful launch of three Cubesat-type nanosatellites from the Vostochny cosmodrome. These satellites are equipped with instruments for space radiation monitoring, as well as prototypes of devices for observing transient phenomena in the Earth’s atmosphere. In particular, two satellites are equipped with scintillation phosphich detectors that detect charged particles and gamma quanta in the energy release range of 0.1–2 MeV. The geometric factor of these instruments is $${\approx}50$$ cm $${}^{2}$$ sr. One of the Cubesats also carries an optical photometer, consisting of four silicon photomultipliers, which entrance windows are covered with different light filters. The satellites were launched into solar-synchronous orbits with an altitude of $${\approx}550$$ km. This makes favorable conditions for space radiation monitoring in various areas of near-Earth space, including zones of trapped radiation, areas of precipitation, etc. Such an orbit also allows observations of flare phenomena both in the equatorial atmosphere and at high latitudes. The first results of flight tests are discussed.

Tài liệu tham khảo

M. I. Panasyuk, M. V. Podzolko, A. S. Kovtyukh, et al., Cosmic Res. 53, 423 (2015). http://doi.org/10.1134/S0010952515060039 M. I. Panasyuk, M. V. Podzolko, A. S. Kovtyukh, et al., Cosmic Res. 55, 79 (2017). http://doi.org/10.1134/S0010952516060071 V. A. Sadovnichii, M. I. Panasyuk, V. M. Lipunov, et al., Cosmic Res. 56, 488 (2018). http://doi.org/10.1134/S001095251901009X M. I. Panasyuk, M. V. Podzolko, T. G. Mammadzada, et al., J. Space Weather Space Climate (2020, in press). L. S. Novikov and M. I. Panasyuk, Vopr. At. Nauki Tekh., Ser.: Fiz. Rad. Vozdeistv. Radioelektron. Appar., No. 4, 3 (2002). D. M. Sawyer and J. I. Vette, ‘‘AP-8 trapped proton environment for solar maximum and solar minimum,’’ NSSDC/WDC-A-R&S 76-06 (1979). J. I. Vette, ‘‘The AE-8 trapped electron environment,’’ NSSDC/WDC-A-R&S 1-24 (1991). M. I. Panasyuk, E. N. Sosnovets, et al., ‘‘Natural radiation belts of the Earth,’’ in Space Model (Mosk. Gos. Univ., Moscow, 1983), Vol. 3, p. 66 [in Russian]. M. I. Panasyuk and E. N. Sosnovets, ‘‘Intensities of electrons and protons depending on L and B,’’ in Space Model (Mosk. Gos. Univ., Moscow, 1983), Vol. 3, p. 421 [in Russian]. I. V. Getselev, A. A. Gusev, L. A. Darchieva, et al., Model of the Spatial-Energy Distribution of the Fluxes of Trapped Particles (Protons and Electrons) in the Radiation Belts of the Earth (Mosk. Gos. Univ., Moscow, 1991) [in Russian]. G. P. Ginet, T. P. O’Brien, S. L. Huston, et al., Space Sci. Rev. 179, 579 (2013). http://doi.org/10.1007/s11214-013-9964-y I. V. Getselev, E. N. Sosnovets, A. S. Kovtyukh, et al., Cosmic Res. 43, 229 (2005). doi 10.1007/s10604-005-0040-6 N. V. Kuznetsov and N. I. Nikolayeva, Cosmic Res. 50, 13 (2012). doi 10.1134/S0010952512010054 L. V. Tverskaya, S. V. Balashov, and N. N. Veden’kin, Geomagn. Aeron. 52, 740 (2012). http://doi.org/10.1134/S0016793212060126 M. I. Panasuyk, V. V. Kalegaev, I. N. Myagkova, N. V. Kuznetsov, and M. V. Podzolko, Cosmic Res. 55, 464 (2017). http://doi.org/10.1134/S0010952517060089 E. V. Gorchakov, V. G. Afanas’ev, K. G. Afanas’ev, et al., Izv. Vyssh. Uchebn. Zaved. MV SSO SSSR, Fiz., No. 10, 69 (1987). E. G. Mullen, M. S. Gussenhoven, K. Ray, and M. A. Violet, IEEE Trans. Nucl. Sci. 38, 1713 (1991). http://doi.org/10.1109/23.124167 Yu. I. Logachev and L. L. Lazutin, Cosmic Res. 50, 116 (2012). http://doi.org/10.1134/S0010952512020050 N. V. Kuznetsov, N. I. Nikolaeva, and M. I. Panasyuk, Cosmic Res. 48, 80 (2010). http://doi.org/10.1134/S0010952510010065 D. S. Evans and M. S. Greer, ‘‘Polar Orbiting Environmental Satellite Space Environment Monitor-2: Instrument descriptions and archive data documentation,’’ NOAA Tech. Memorandum OAR SEC-93 (NOAA, Boulder, CO, 2000). T. G. Onsager, R. Grubb, J. Kunches, et al., Proc. SPIE 2812, 281 (1996). http://doi.org/10.1117/12.254075 N. A. Vlasova, E. A. Ginzburg, V. V. Kalegaev, et al., Cosmic Res. 51, 319 (2013). http://doi.org/10.1134/S0010952513050092 V. O. Barinova, A. V. Bogomolov, V. V. Kalegaev, et al., Mosc. Univ. Phys. Bull. 66, 616 (2011). http://doi.org/10.3103/S0027134911060038 N. Fox and J. L. Burch, The Van Allen Probes Mission (Springer, Berlin, 2014). http://doi.org/10.1007/978-1-4899-7433-4 S. Kraft, A. Lupi, and J.-P. Luntama, ‘‘ESA’s Distributed Space Weather Sensor System (D3S) utilizing hosted payloads for operational space weather monitoring,’’ in Proceedings of the 67th International Astronautical Congress IAC-16, Guadalajara, Mexico, September 26–30, 2016 (2016), D1,7,1,x35329. V. L. Petrov, A. V. Bogomolov, V. V. Bogomolov, et al., Geomagn. Aeron. 60, 151 (2020). http://doi.org/10.1134/S0016793220020115