A Filter Design Based on Human Sentiments Fusion for Estimating Vehicle Arrival Time
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lacambre, J.B., Narozny, M., Louge, J.M.: Limitations of the unscented Kalman filter for the attitude determination on an inertial navigation system. In: Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), 2013 I.E. on, pp. 187–192. IEEE (2013)
Wu, H., Chen, S., Yang, B., Luo, X.: Range-parameterised orthogonal simplex cubature Kalman filter for bearings-only measurements. IET Science, Measurement & Technology, on pp. 370–374 (2016)
Turner, S.M., Eisele, W.L., Benz, R.J., Holdener, D.J.: Travel time data collection handbook (No. FHWA-PL-98-035) (1998)
Rupnik, J., Davies, J., Fortuna, B., Duke, A., Clarke, S.S.: Travel time prediction on highways. In: Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), 2015 I.E. International Conference on, pp. 1435–1442 (2015)
Moridpour, S., Anwar, T., Sadat, M.T., Mazloumi, E.: A genetic algorithm-based support vector machine for bus travel time prediction. In: Transportation Information and Safety (ICTIS), 2015 International Conference on pp. 264–270. IEEE (2015)
Kehagias, D., Salamanis, A., Tzovaras, D.: Speed pattern recognition technique for short-term traffic forecasting based on traffic dynamics. IET Intell. Transp. Syst. 9(6), 646–653 (2015). https://doi.org/10.1049/iet-its.2014.0213
Salamanis, A., Meladianos, P., Kehagias, D., Tzovaras, D.: Evaluating the effect of time series segmentation on STARIMA-based traffic prediction model. In: 2015 I.E. 18th International Conference on Intelligent Transportation Systems, pp. 2225–2230. IEEE (2015)
Ahn, G.H., Ki, Y.K., Kim, E.J.: Real-time estimation of travel speed using urban traffic information system and filtering algorithm. IET Intell. Transp. Syst. 8(2), 145–154 (2014). https://doi.org/10.1049/iet-its.2012.0051
Ji, H., Xu, A., Sui, X., Li, L: The applied research of Kalman in the dynamic travel time prediction. In: 2010 18th International Conference on Geoinformatics on pp. 1–5. IEEE (2010)
Park, D., Rilett, L.R., Han, G.: Spectral basis neural networks for real-time travel time forecasting. J. Transp. Eng. 125(6), 515–523 (1999). https://doi.org/10.1061/(ASCE)0733-947X(1999)125:6(515)
Bhaskar, A., Chung, E., Dumont, A.G.: Analysis for the use of cumulative plots for travel time estimation on signalized network. Int. J. Intell. Transp. Syst. Res. 8(3), 151–163 (2010)
Lim, S., Lee, C.: Data fusion algorithm improves travel time predictions. IET Intell. Transp. Syst. 5(4), 302–309 (2011). https://doi.org/10.1049/iet-its.2011.0014
You, J., Kim, T.J.: Development and evaluation of a hybrid travel time forecasting model. Transportation Research Part C: Emerging Technologies. 8(1), 231–256 (2000). https://doi.org/10.1016/S0968-090X(00)00012-7
Bonneson, J., Sharma, A., Bullock, D.: Measuring the performance of automobile traffic on urban streets. NCHRP Reort. Transportation Research Board of the National Academies, Washington, DC (2008)
Ishak, S., Al-Deek, H.: Performance evaluation of short-term time-series traffic prediction model. J. Transp. Eng. 128(6), 490–498 (2002). https://doi.org/10.1061/(ASCE)0733-947X(2002)128:6(490)
Kwon, J., Coifman, B., Bickel, P.: Day-to-day travel-time trends and travel-time prediction from loop-detector data. Transportation Research Record: Journal of the Transportation Research Board. 1717, 120–129 (2000). https://doi.org/10.3141/1717-15
Zhang, X., Rice, J.A.: Short-term travel time prediction. Transportation Research Part C: Emerging Technologies. 11(3), 187–210 (2003). https://doi.org/10.1016/S0968-090X(03)00026-3
El Faouzi, N.E., Klein, L.A., De Mouzon, O.: Improving travel time estimates from loop and toll collection data with Dempster–Shafer data fusion. In: Transportation Research Board 88th Annual Meeting on pp. 73–80 (2009)
El Faouzi, N.E., Lefèvre, E.: Bayesian and evidential approaches for traffic data fusion: methodological issues and case study. In: 85th Transportation Research Board Meeting, on pp. 1–18 (2006)
Chu, L., Oh, J., Recker, W.: Adaptive Kalman filter based freeway travel time estimation. Transportation Research Board 84th Annual Meeting, Washington DC, on pp. 1–21 (2005)
Ivan, J.N.: Neural network representations for arterial street incident detection data fusion. Transp. Res. C. 5(3/4), 245–254 (1997). https://doi.org/10.1016/S0968-090X(97)00018-1
Nam, D.H., Drew, D.R.: Traffic dynamics: method for estimating freeway travel times in real time from flow measurements. J. Transp. Eng. 122(3), 185–191 (1996). https://doi.org/10.1061/(ASCE)0733-947X(1996)122:3(185)
Abdelfattah, A., Khan, A.: Models for predicting bus delays. Transportation Research Record: Journal of the Transportation Research Board. 1623, 8–15 (1998). https://doi.org/10.3141/1623-02
Nelson, P.C., Palacharla, P.: Neural network model for data fusion in ADVANCE. In: Publ by ASCE, on pp. 237–293 (1993)
Julier, S.J., Uhlmann, J.K.: General decentralized data fusion with covariance intersection. Handbook of multisensor data fusion, on pp. 319–342 (2001)
El Faouzi, N.E.: Data fusion in road traffic engineering: an overview. In Defense and Security, on pp. 360–371. International Society for Optics and Photonics, (2004)
Smarandache, F., Dezert, J. (Eds.): Advances and Applications of DSmT for Information Fusion (Collected works), second volume: Collected Works (Vol. 2). Infinite Stu (2006)