A Feature Selection Based on the Farmland Fertility Algorithm for Improved Intrusion Detection Systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Khammassi, C., Krichen, S.: A GA-LR wrapper approach for feature selection in network intrusion detection. Comput. Secur. 70, 255–277 (2017)
Samadi Bonab, M., et al.: A wrapper‐based feature selection for improving performance of intrusion detection systems. Int. J. Commun. Syst. 33, e4434 (2020)
Aldweesh, A., Derhab, A., Emam, A.Z.: Deep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issues. Knowl.-Based Syst. 189, 105124 (2020)
Husain, M.S.: Nature inspired approach for intrusion detection systems. In: Design and Analysis of Security Protocol for Communication, pp. 171–182 (2020)
Jiang, K., et al.: Network intrusion detection combined hybrid sampling with deep hierarchical network. IEEE Access 8, 32464–32476 (2020)
Nadimi-Shahraki, M.H., et al.: Migration-based Moth-flame optimization algorithm. Processes 9(12), 2276 (2021)
Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 104, 104314 (2021)
Nadimi-Shahraki, M.H., et al.: An improved Moth-flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems. Entropy 23(12), 1637 (2021)
Ghafori, S., Gharehchopogh, F.S.: Advances in spotted hyena optimizer: a comprehensive survey. Arch. Comput. Methods Eng. 1, 1–22 (2021). https://doi.org/10.1007/s11831-021-09624-4
Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: CCSA: conscious neighborhood-based crow search algorithm for solving global optimization problems. Appl. Soft Comput 85, 105583 (2019)
Nadimi-Shahraki, M.H., et al.: B-MFO: a binary moth-flame optimization for feature selection from medical datasets. Computers 10(11), 136 (2021)
Gharehchopogh, F.S., Shayanfar, H., Gholizadeh, H.: A comprehensive survey on symbiotic organisms search algorithms. Artif. Intell. Rev. 53, 2265–2312 (2019)
Gharehchopogh, F.S., Gholizadeh, H.: A comprehensive survey: whale optimization algorithm and its applications. Swarm Evol. Comput. 48, 1–24 (2019)
Garcia-Teodoro, P., et al.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2), 18–28 (2009)
Rajamohana, S., Umamaheswari, K.: Hybrid approach of improved binary particle swarm optimization and shuffled frog leaping for feature selection. Comput. Electr. Eng. 67, 497–508 (2018)
Liao, T.W., Kuo, R.: Five discrete symbiotic organisms search algorithms for simultaneous optimization of feature subset and neighborhood size of knn classification models. Appl. Soft Comput. 64, 581–595 (2018)
Abdel-Basset, M., et al.: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Exp. Syst. Appl. 139, 112824 (2020)
Shayanfar, H., Gharehchopogh, F.S.: Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems. Appl. Soft Comput. 71, 728–746 (2018)
Gharehchopogh, F.S., Abdollahzadeh, B.: An efficient harris hawk optimization algorithm for solving the travelling salesman problem. Clust. Comput. (2021). https://doi.org/10.1007/s10586-021-03304-5
Abdollahzadeh, B., Gharehchopogh, F.S.: A multi-objective optimization algorithm for feature selection problems. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01369-9
Wei, W., et al.: A multi-objective immune algorithm for intrusion feature selection. Appl. Soft Comput. 95, 106522 (2020)
Alazzam, H., Sharieh, A., Sabri, K.E.: A feature selection algorithm for intrusion detection system based on Pigeon Inspired Optimizer. Exp. Syst. Appl. 148, 113249 (2020)
Nazir, A., Khan, R.A.: A novel combinatorial optimization based feature selection method for network intrusion detection. Comput. Secur. 102, 102164 (2021)
Eesa, A.S., Orman, Z., Brifcani, A.M.A.: A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems. Expert Syst. Appl. 42(5), 2670–2679 (2015)
Mohammadi, S., et al.: Cyber intrusion detection by combined feature selection algorithm. J. Inf. Secur. Appl. 44, 80–88 (2019)
Aghdam, M.H., Kabiri, P.: Feature selection for intrusion detection system using ant colony optimization. Int. J. Netw. Secur. 18(3), 420–432 (2016)
Ghanem, W., Jantan, A.: Novel multi-objective artificial bee Colony optimization for wrapper based feature selection in intrusion detection. Int. J. Adv. Soft Comput. Appl. 8(1) (2016)
Guo, C., et al.: A two-level hybrid approach for intrusion detection. Neurocomputing 214, 391–400 (2016)
Farnaaz, N., Jabbar, M.: Random forest modeling for network intrusion detection system. Procedia Comput. Sci. 89, 213–217 (2016)
Manzoor, I., Kumar, N.: A feature reduced intrusion detection system using ANN classifier. Expert Syst. Appl. 88, 249–257 (2017)
Aburomman, A.A., Reaz, M.B.I.: A survey of intrusion detection systems based on ensemble and hybrid classifiers. Comput. Secur. 65, 135–152 (2017)
Khorram, T., Baykan, N.A.: Feature selection in network intrusion detection using metaheuristic algorithms. Int. J. Adv. Res. Ideas Innov. Technol. 4(4), 704–710 (2018)
Acharya, N., Singh, S.: An IWD-based feature selection method for intrusion detection system. Soft. Comput. 22(13), 4407–4416 (2018)
Papamartzivanos, D., Mármol, F.G., Kambourakis, G.: Dendron: genetic trees driven rule induction for network intrusion detection systems. Future Gener. Comput. Syst. 79, 558–574 (2018)
Selvakumar, B., Muneeswaran, K.: Firefly algorithm based feature selection for network intrusion detection. Comput. Secur. 81, 148–155 (2019)
Alzubi, Q.M., et al.: Intrusion detection system based on a modified binary grey wolf optimisation. Neural Comput. Appl. 32, 6125–6137 (2019)
Garg, L., Aggarwal, N.: A hybrid feature reduced approach for intrusion detection system. In: Computing and Network Sustainability, pp. 179–186. Springer, Berlin (2019)
Su, T., et al.: BAT: deep learning methods on network intrusion detection using NSL-KDD dataset. IEEE Access 8, 29575–29585 (2020)
Benyamin, A., Farhad, S.G., Saeid, B.: Discrete farmland fertility optimization algorithm with metropolis acceptance criterion for traveling salesman problems. Int. J. Intell. Syst. 36(3), 1270–1303 (2021)
Gharehchopogh, F.S., Farnad, B., Alizadeh, A.: A modified farmland fertility algorithm for solving constrained engineering problems. Concurr. Comput.: Pract. Exp. 33(17), e6310 (2021)
Hosseinalipour, A., et al.: A novel binary farmland fertility algorithm for feature selection in analysis of the text psychology. Appl. Intell. 51, 4824–4859 (2021)
Kevric, J., Jukic, S., Subasi, A.: An effective combining classifier approach using tree algorithms for network intrusion detection. Neural Comput. Appl. 28(1), 1051–1058 (2017)
Dhanabal, L., Shantharajah, S.: A study on NSL-KDD dataset for intrusion detection system based on classification algorithms. Int. J. Adv. Res. Comput. Commun. Eng. 4(6), 446–452 (2015)
Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS). IEEE (2015)
Mirjalili, S., Lewis, A.: S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013)