A*-FastIsomap: An Improved Performance of Classical Isomap Based on A* Search Algorithm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Han Z, Meng D-Y, Xu Z-B, Gu N-N (2011) Incremental alignment manifold learning. J Comput Sci Technol 26(1):153–165
Meng D, Leung Y, Xu Z, Fung T, Zhang Q (2008) Improving geodesic distance estimation based on locally linear assumption. Pattern Recogn Lett 29(7):862–870
Meng D, Leung Y, Xu Z (2011) Detecting intrinsic loops underlying data manifold. IEEE Trans Knowl Data Eng 25(2):337–347
Saul LK, Roweis ST (2003) Think globally, fit locally: unsupervised learning of low dimensional manifolds. Departmental Papers (CIS), 12
De Silva V, Tenenbaum JB (2002) Global versus local methods in nonlinear dimensionality reduction. NIPS 15:705–712
Liang D, Qiao C, Xu Z (2015) Enhancing both efficiency and representational capability of isomap by extensive landmark selection. Mathematical Problems in Engineering 2015
Shi H, Yin B, Bao Y, Lei Y (2016) A novel landmark point selection method for l-isomap. In: 2016 12th IEEE International Conference on Control and Automation (ICCA), pp 621–625. IEEE
Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323
Zhang Z, Zha H (2004) Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J Sci Comput 26(1):313–338
Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci 96(6):2907–2912
Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396
Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326
Hong-Yuan W, Xiu-Jie D, Qi-Cai C, Fu-Hua C (2013) An improved isomap for visualization and classification of multiple manifolds. In: International Conference on Neural Information Processing, pp 1–12. Springer
Qu T, Cai Z (2015) A fast isomap algorithm based on fibonacci heap. In: International Conference in Swarm Intelligence, pp 225–231. Springer
Qu T, Cai Z (2017) An improved isomap method for manifold learning. International Journal of Intelligent Computing and Cybernetics
Lei Y-K, Xu Y, Zhang S-W, Wang S-L, Ding Z-G (2010) Fast isomap based on minimum set coverage. In: International Conference on Intelligent Computing, pp 173–179. Springer
DS GMJ (1979) Computers and intractability: a guide to the theory of np-completeness. San Franciso WH Freeman and co
Fu B, Chen L, Zhou Y, Zheng D, Wei Z, Dai J, Pan H (2018) An improved a* algorithm for the industrial robot path planning with high success rate and short length. Robot Auton Syst 106:26–37
Zhang Z, Chow TW, Zhao M (2012) M-isomap: Orthogonal constrained marginal isomap for nonlinear dimensionality reduction. IEEE Trans Cybern 43(1):180–191
Yousaf M, Rehman TU, Liao D, Alhusaini N, Jing L (2020) Fastisomapvis: A novel approach for nonlinear manifold learning. IEEE Access 8:199470–199481
Najafi A, Joudaki A, Fatemizadeh E (2016) Nonlinear dimensionality reduction via path-based isometric mapping. IEEE Trans Pattern Anal Mach Intell 38(7):1452–1464
Huang R, Zhang G, Chen J (2019) Semi-supervised discriminant isomap with application to visualization, image retrieval and classification. Int J Mach Learn Cybern 10(6):1269–1278
Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791
Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans Royal Soc Math Phys Eng Sci 374(2065):2015–0202
Schölkopf B, Smola A, Müller K-R (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319
Takahashi S, Fujishiro I, Okada M (2009) Applying manifold learning to plotting approximate contour trees. IEEE Trans Visual Comput Graphics 15(6):1185–1192
Yazdian N, Tie Y, Venetsanopoulos A, Guan L (2014) Automatic ontario license plate recognition using local normalization and intelligent character classification. In: 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp 1–6. IEEE
Gepshtein S, Keller Y (2015) Sensor network localization by augmented dual embedding. IEEE Trans Signal Process 63(9):2420–2431
Rana S, Singh A (2016) Comparative analysis of sentiment orientation using svm and naive bayes techniques. In: 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), pp 106–111. IEEE
Verma R, Khurd P, Davatzikos C (2007) On analyzing diffusion tensor images by identifying manifold structure using isomaps. IEEE Trans Med Imaging 26(6):772–778
Yu J, Zhu C, Zhang J, Huang Q, Tao D (2019) Spatial pyramid-enhanced netvlad with weighted triplet loss for place recognition. IEEE Trans Neural Netw learning sys 31(2):661–674
Chen D, Li X, Li S (2021) A novel convolutional neural network model based on beetle antennae search optimization algorithm for computerized tomography diagnosis. IEEE Transactions on Neural Networks and Learning Systems
Maier M, Von Luxburg U, Hein M (2008) Influence of graph construction on graph-based clustering measures. In: NIPS, 1025: 1032. Citeseer
Hougardy S (2010) The floyd-warshall algorithm on graphs with negative cycles. Inf Process Lett 110(8–9):279–281
Silpa-Anan C, Hartley RI (2008) Optimised kd-trees for fast image descriptor matching. 2008 IEEE Conference on Computer Vision and Pattern Recognition, 1–8
Jo J, Seo J, Fekete J-D (2017) A progressive kd tree for approximate k-nearest neighbors. In: 2017 IEEE Workshop on Data Systems for Interactive Analysis (DSIA), pp 1–5. IEEE
Muja M, Lowe DG (2009) Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP (1) 2(331–340):2
Zhan FB (1997) Three fastest shortest path algorithms on real road networks: Data structures and procedures. J Geogr Inf Decis Anal 1(1):69–82
Xiao-Yan L, Yan-Li C (2010) Application of dijkstra algorithm in logistics distribution lines. In: Third International Symposium on Computer Science and Computational Technology (ISCSCT’10), Jiaozuo, PR China, pp 048–050. Citeseer
Abujassar R, Ghanbari M (2011) Efficient algorithms to enhance recovery schema in link state protocols. arXiv preprint arXiv:1108.1426
Wang H, Yu Y, Yuan Q (2011) Application of dijkstra algorithm in robot path-planning. In: 2011 Second International Conference on Mechanic Automation and Control Engineering, pp 1067–1069. IEEE
Eneh A, Arinze U (2017) Comparative analysis and implementation of dijkstra’s shortest path algorithm for emergency response and logistic planning. Niger J Technol 36(3):876–888
Sivakumar S, Chandrasekar C (2014) Modified dijkstra’s shortest path algorithm. Int J Innov Research Comp Commun Eng 2(11):6450–6456
Yu J, Tao D, Wang M (2012) Adaptive hypergraph learning and its application in image classification. IEEE Trans Image Process 21(7):3262–3272
Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE trans Sys Sci Cybern 4(2):100–107
Cherkassky BV, Goldberg AV, Radzik T (1996) Shortest paths algorithms: Theory and experimental evaluation. Math Program 73(2):129–174
Gulraj M, Ahmad N (2016) Mood detection of psychological and mentally disturbed patients using machine learning techniques. Int J Comp Sci Network Secur (IJCSNS) 16(8):63
Amsaleg L, Jegou H (2010) Datasets for approximate nearest neighbor search
Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large network dataset collection. MI, USA, Ann Arbor
Gredell DA, Schroeder AR, Belk KE, Broeckling CD, Heuberger AL, Kim S-Y, King DA, Shackelford SD, Sharp JL, Wheeler TL et al (2019) Comparison of machine learning algorithms for predictive modeling of beef attributes using rapid evaporative ionization mass spectrometry (reims) data. Sci Rep 9(1):1–9