A*-FastIsomap: An Improved Performance of Classical Isomap Based on A* Search Algorithm

Tanzeel Ur Rehman1, Mahwish Yousaf2, Jing Li2
1University of Science and Technology of China
2School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Han Z, Meng D-Y, Xu Z-B, Gu N-N (2011) Incremental alignment manifold learning. J Comput Sci Technol 26(1):153–165

Meng D, Leung Y, Xu Z, Fung T, Zhang Q (2008) Improving geodesic distance estimation based on locally linear assumption. Pattern Recogn Lett 29(7):862–870

Meng D, Leung Y, Xu Z (2011) Detecting intrinsic loops underlying data manifold. IEEE Trans Knowl Data Eng 25(2):337–347

Saul LK, Roweis ST (2003) Think globally, fit locally: unsupervised learning of low dimensional manifolds. Departmental Papers (CIS), 12

De Silva V, Tenenbaum JB (2002) Global versus local methods in nonlinear dimensionality reduction. NIPS 15:705–712

Liang D, Qiao C, Xu Z (2015) Enhancing both efficiency and representational capability of isomap by extensive landmark selection. Mathematical Problems in Engineering 2015

Shi H, Yin B, Bao Y, Lei Y (2016) A novel landmark point selection method for l-isomap. In: 2016 12th IEEE International Conference on Control and Automation (ICCA), pp 621–625. IEEE

Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

Zhang Z, Zha H (2004) Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J Sci Comput 26(1):313–338

Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci 96(6):2907–2912

Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

Hong-Yuan W, Xiu-Jie D, Qi-Cai C, Fu-Hua C (2013) An improved isomap for visualization and classification of multiple manifolds. In: International Conference on Neural Information Processing, pp 1–12. Springer

Qu T, Cai Z (2015) A fast isomap algorithm based on fibonacci heap. In: International Conference in Swarm Intelligence, pp 225–231. Springer

Qu T, Cai Z (2017) An improved isomap method for manifold learning. International Journal of Intelligent Computing and Cybernetics

Lei Y-K, Xu Y, Zhang S-W, Wang S-L, Ding Z-G (2010) Fast isomap based on minimum set coverage. In: International Conference on Intelligent Computing, pp 173–179. Springer

DS GMJ (1979) Computers and intractability: a guide to the theory of np-completeness. San Franciso WH Freeman and co

Jing L, Shao C (2011) Selection of the suitable parameter value for isomap. J Softw 6(6):1034–1041

Fu B, Chen L, Zhou Y, Zheng D, Wei Z, Dai J, Pan H (2018) An improved a* algorithm for the industrial robot path planning with high success rate and short length. Robot Auton Syst 106:26–37

Zhang Z, Chow TW, Zhao M (2012) M-isomap: Orthogonal constrained marginal isomap for nonlinear dimensionality reduction. IEEE Trans Cybern 43(1):180–191

Yousaf M, Rehman TU, Liao D, Alhusaini N, Jing L (2020) Fastisomapvis: A novel approach for nonlinear manifold learning. IEEE Access 8:199470–199481

Najafi A, Joudaki A, Fatemizadeh E (2016) Nonlinear dimensionality reduction via path-based isometric mapping. IEEE Trans Pattern Anal Mach Intell 38(7):1452–1464

Huang R, Zhang G, Chen J (2019) Semi-supervised discriminant isomap with application to visualization, image retrieval and classification. Int J Mach Learn Cybern 10(6):1269–1278

Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

Torgerson WS (1952) Multidimensional scaling: I. theory and method. Psychometrika 17(4):401–419

Cox MAA, Cox TF (2008) Multidimensional Scaling, pp 315–347. Springer,Berlin Heidelberg

Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans Royal Soc Math Phys Eng Sci 374(2065):2015–0202

Schölkopf B, Smola A, Müller K-R (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

Takahashi S, Fujishiro I, Okada M (2009) Applying manifold learning to plotting approximate contour trees. IEEE Trans Visual Comput Graphics 15(6):1185–1192

Yazdian N, Tie Y, Venetsanopoulos A, Guan L (2014) Automatic ontario license plate recognition using local normalization and intelligent character classification. In: 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp 1–6. IEEE

Gepshtein S, Keller Y (2015) Sensor network localization by augmented dual embedding. IEEE Trans Signal Process 63(9):2420–2431

Rana S, Singh A (2016) Comparative analysis of sentiment orientation using svm and naive bayes techniques. In: 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), pp 106–111. IEEE

Verma R, Khurd P, Davatzikos C (2007) On analyzing diffusion tensor images by identifying manifold structure using isomaps. IEEE Trans Med Imaging 26(6):772–778

Yu J, Zhu C, Zhang J, Huang Q, Tao D (2019) Spatial pyramid-enhanced netvlad with weighted triplet loss for place recognition. IEEE Trans Neural Netw learning sys 31(2):661–674

Chen D, Li X, Li S (2021) A novel convolutional neural network model based on beetle antennae search optimization algorithm for computerized tomography diagnosis. IEEE Transactions on Neural Networks and Learning Systems

Maier M, Von Luxburg U, Hein M (2008) Influence of graph construction on graph-based clustering measures. In: NIPS, 1025: 1032. Citeseer

Hougardy S (2010) The floyd-warshall algorithm on graphs with negative cycles. Inf Process Lett 110(8–9):279–281

Silpa-Anan C, Hartley RI (2008) Optimised kd-trees for fast image descriptor matching. 2008 IEEE Conference on Computer Vision and Pattern Recognition, 1–8

Jo J, Seo J, Fekete J-D (2017) A progressive kd tree for approximate k-nearest neighbors. In: 2017 IEEE Workshop on Data Systems for Interactive Analysis (DSIA), pp 1–5. IEEE

Muja M, Lowe DG (2009) Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP (1) 2(331–340):2

Zhan FB (1997) Three fastest shortest path algorithms on real road networks: Data structures and procedures. J Geogr Inf Decis Anal 1(1):69–82

Xiao-Yan L, Yan-Li C (2010) Application of dijkstra algorithm in logistics distribution lines. In: Third International Symposium on Computer Science and Computational Technology (ISCSCT’10), Jiaozuo, PR China, pp 048–050. Citeseer

Abujassar R, Ghanbari M (2011) Efficient algorithms to enhance recovery schema in link state protocols. arXiv preprint arXiv:1108.1426

Wang H, Yu Y, Yuan Q (2011) Application of dijkstra algorithm in robot path-planning. In: 2011 Second International Conference on Mechanic Automation and Control Engineering, pp 1067–1069. IEEE

Eneh A, Arinze U (2017) Comparative analysis and implementation of dijkstra’s shortest path algorithm for emergency response and logistic planning. Niger J Technol 36(3):876–888

Sivakumar S, Chandrasekar C (2014) Modified dijkstra’s shortest path algorithm. Int J Innov Research Comp Commun Eng 2(11):6450–6456

Yu J, Tao D, Wang M (2012) Adaptive hypergraph learning and its application in image classification. IEEE Trans Image Process 21(7):3262–3272

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE trans Sys Sci Cybern 4(2):100–107

Cherkassky BV, Goldberg AV, Radzik T (1996) Shortest paths algorithms: Theory and experimental evaluation. Math Program 73(2):129–174

Gulraj M, Ahmad N (2016) Mood detection of psychological and mentally disturbed patients using machine learning techniques. Int J Comp Sci Network Secur (IJCSNS) 16(8):63

Amsaleg L, Jegou H (2010) Datasets for approximate nearest neighbor search

Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large network dataset collection. MI, USA, Ann Arbor

Gredell DA, Schroeder AR, Belk KE, Broeckling CD, Heuberger AL, Kim S-Y, King DA, Shackelford SD, Sharp JL, Wheeler TL et al (2019) Comparison of machine learning algorithms for predictive modeling of beef attributes using rapid evaporative ionization mass spectrometry (reims) data. Sci Rep 9(1):1–9

Geng X, Zhan D-C, Zhou Z-H (2005) Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans Sys Man Cybern Part B (Cybern) 35(6):1098–1107