A Family of Convex Sets in the Plane Satisfying the (4, 3)-Property can be Pierced by Nine Points
Tóm tắt
We prove that every finite family of convex sets in the plane satisfying the (4, 3)-property can be pierced by nine points. This improves the bound of 13 proved by Kleitman et al. (Combinatorica 21(2), 221–232 (2001)).
Tài liệu tham khảo
Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger–Debrunner \((p, q)\)-problem. Adv. Math. 96(1), 103–112 (1992)
Hadwiger, H., Debrunner, H.: Über eine Variante zum Hellyschen Satz. Arch. Math. (Basel) 8, 309–313 (1957)
Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresber. Deutsch. Math. Verein. 32, 175–176 (1923)
Keller, Ch., Smorodinsky, S., Tardos, G.: Improved bounds on the Hadwiger–Debrunner numbers. Israel J. Math. 225(2), 925–945 (2018)
Kleitman, D.J., Gyárfás, A., Tóth, G.: Convex sets in the plane with three of every four meeting. Combinatorica 21(2), 221–232 (2001)
Knaster, B., Kuratowski, C., Mazurkiewicz, S.: Ein Beweis des Fixpunktsatzes für \(n\)-dimensionale Simplexe. Fundam. Math. 14, 132–137 (1929)
Lassonde, M.: Sur le principe KKM. C. R. Acad. Sci. Paris Sér. I Math. 310(7), 573–576 (1990)
Tardos, G.: Transversals of \(2\)-intervals, a topological approach. Combinatorica 15(1), 123–134 (1995)