A Faber–Krahn inequality for solutions of Schrödinger’s equation
Tài liệu tham khảo
Bers, 1955, Local behavior of solutions of general linear elliptic equations, Comm. Pure Appl. Math., 8, 473, 10.1002/cpa.3160080404
Chavel, 2001, Isoperimetric inequalities: differential geometric and analytic perspectives
L. De Carli, J. Edward, S. Hudson, M. Leckband, Minimal support results for Schrödinger equations, (2011), Preprint.
De Carli, 2010, Geometric remarks on the level curves of harmonic functions, Bull. Lond. Math. Soc., 42, 83, 10.1112/blms/bdp099
Donnelly, 1988, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math., 93, 161, 10.1007/BF01393691
Donnelly, 1990, Nodal sets of eigenfunctions of the Laplacian on surfaces, J. Amer. Math Soc., 3, 333, 10.1090/S0894-0347-1990-1035413-2
A. Enciso, D. Peralta-Salas, Some conjectures by De Carli and Hudson in harmonic function theory, 2010, Preprint.
Federer, 1959, Curvature measures, Trans. Amer. Math. Soc., 93, 418, 10.1090/S0002-9947-1959-0110078-1
Flatto, 1969, A theorem on level curves of harmonic functions, J. Lond. Math. Soc. (2), 1, 470, 10.1112/jlms/s2-1.1.470
F. Hamel, N. Naradihsvili, E. Russ, A Faber Krahn inequality with drift, 2006, Preprint.
Matsumoto, 2002, vol. 208
Nadirashvili, 2001, Geometric properties of eigenfunctions, Uspekhi Mat. Nauk, 56 6, 67
Nazarov, 2005, Sign and area in nodal geometry of Laplace eigenfunctions, Amer. J. Math., 127, 879, 10.1353/ajm.2005.0030
Savo, 2001, Lower bounds for the nodal length of eigenfunctions of the Laplacian, Ann. Global Anal. Geom., 19, 133, 10.1023/A:1010774905973
Wen, 1991, Set of zeros of harmonic functions of two variables, 1494, 196
Wolff, 1995, Recent work on sharp estimates in second order elliptic unique continuation problems, 99