A Faber–Krahn inequality for solutions of Schrödinger’s equation

Advances in Mathematics - Tập 230 - Trang 2416-2427 - 2012
L. De Carli1, S.M. Hudson1
1Florida International University, Math, 11200 S.W. 8th Street, Miami, FL 33199, United States

Tài liệu tham khảo

Bers, 1955, Local behavior of solutions of general linear elliptic equations, Comm. Pure Appl. Math., 8, 473, 10.1002/cpa.3160080404 Chavel, 2001, Isoperimetric inequalities: differential geometric and analytic perspectives L. De Carli, J. Edward, S. Hudson, M. Leckband, Minimal support results for Schrödinger equations, (2011), Preprint. De Carli, 2010, Geometric remarks on the level curves of harmonic functions, Bull. Lond. Math. Soc., 42, 83, 10.1112/blms/bdp099 Donnelly, 1988, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math., 93, 161, 10.1007/BF01393691 Donnelly, 1990, Nodal sets of eigenfunctions of the Laplacian on surfaces, J. Amer. Math Soc., 3, 333, 10.1090/S0894-0347-1990-1035413-2 A. Enciso, D. Peralta-Salas, Some conjectures by De Carli and Hudson in harmonic function theory, 2010, Preprint. Federer, 1959, Curvature measures, Trans. Amer. Math. Soc., 93, 418, 10.1090/S0002-9947-1959-0110078-1 Flatto, 1969, A theorem on level curves of harmonic functions, J. Lond. Math. Soc. (2), 1, 470, 10.1112/jlms/s2-1.1.470 F. Hamel, N. Naradihsvili, E. Russ, A Faber Krahn inequality with drift, 2006, Preprint. Matsumoto, 2002, vol. 208 Nadirashvili, 2001, Geometric properties of eigenfunctions, Uspekhi Mat. Nauk, 56 6, 67 Nazarov, 2005, Sign and area in nodal geometry of Laplace eigenfunctions, Amer. J. Math., 127, 879, 10.1353/ajm.2005.0030 Savo, 2001, Lower bounds for the nodal length of eigenfunctions of the Laplacian, Ann. Global Anal. Geom., 19, 133, 10.1023/A:1010774905973 Wen, 1991, Set of zeros of harmonic functions of two variables, 1494, 196 Wolff, 1995, Recent work on sharp estimates in second order elliptic unique continuation problems, 99