A Dynamic Disadvantage? Social Perceptions of Dynamic Morphed Emotions Differ from Videos and Photos
Springer Science and Business Media LLC - Trang 1-20 - 2024
Tóm tắt
Dynamic face stimuli are increasingly used in face perception research, as increasing evidence shows they are perceived differently from static photographs. One popular method for creating dynamic faces is the dynamic morph, which can animate the transition between expressions by blending two photographs together. Although morphs offer increased experimental control, their unnatural motion differs from the biological facial motion captured in video recordings. This study aimed to compare ratings of emotion intensity and genuineness in video recordings, dynamic morphs, and static photographs of happy, sad, fearful, and angry expressions. We found that video recordings were perceived to have greater emotional intensity than dynamic morphs, and video recordings of happy expressions were perceived as more genuine compared to happy dynamic morphs. Unexpectedly, static photographs and video recordings had similar ratings for genuineness and intensity. Overall, these results suggest that dynamic morphs may be an inappropriate substitute for video recordings, as they may elicit misleading dynamic effects.
Tài liệu tham khảo
Alp, N., & Ozkan, H. (2022). Neural correlates of integration processes during dynamic face perception. Scientific Reports, 12(1), 118. https://doi.org/10.1038/s41598-021-02808-9.
Alves, N. T. (2013). Recognition of static and dynamic facial expressions: A study review. Estudos De Psicologia (Natal), 18, 125–130. https://doi.org/10.1590/S1413-294X2013000100020.
Ambadar, Z., Cohn, J. F., & Reed, L. I. (2009). All smiles are not created Equal: Morphology and timing of smiles perceived as amused, polite, and Embarrassed/Nervous. Journal of Nonverbal Behavior, 33(1), 17–34. https://doi.org/10.1007/s10919-008-0059-5.
Ambadar, Z., Schooler, J. W., & Cohn, J. F. (2005). Deciphering the enigmatic face: The importance of facial dynamics in interpreting subtle facial expressions. Psychological Science, 16(5), 403–410. https://doi.org/10.1111/j.0956-7976.2005.01548.x.
Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020). Gorilla in our midst: An online behavioral experiment builder. Behavior Research Methods, 52(1), 388–407. https://doi.org/10.3758/s13428-019-01237-x.
Arsalidou, M., Morris, D., & Taylor, M. J. (2011). Converging evidence for the advantage of dynamic facial expressions. Brain Topography, 24(2), 149–163. https://doi.org/10.1007/s10548-011-0171-4.
Bartlett, M. S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., & Movellan, J. (2006). Fully automatic facial action recognition in spontaneous behavior. In 7th International Conference on Automatic Face and Gesture Recognition (FGR06) (pp. 223–230). IEEE.https://doi.org/10.1109/FGR.2006.55
Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., & Gross, M. (2007). Multi-scale capture of facial geometry and motion. ACM Trans Graph, 26(3), 33–es. https://doi.org/10.1145/1276377.1276419.
Biele, C., & Grabowska, A. (2006). Sex differences in perception of emotion intensity in dynamic and static facial expressions. Experimental Brain Research, 171(1), 1–6. https://doi.org/10.1007/s00221-005-0254-0.
Blair, R. J., Morris, J. S., Frith, C. D., Perrett, D. I., & Dolan, R. J. (1999). Dissociable neural responses to facial expressions of sadness and anger. Brain, 122(5), 883–893. https://doi.org/10.1093/brain/122.5.883.
Blais, C., Roy, C., Fiset, D., Arguin, M., & Gosselin, F. (2012). The eyes are not the window to basic emotions. Neuropsychologia, 50(12), 2830–2838. https://doi.org/10.1016/j.neuropsychologia.2012.08.010.
Bogdanova, O. V., Bogdanov, V. B., Miller, L. E., & Hadj-Bouziane, F. (2022). Simulated proximity enhances perceptual and physiological responses to emotional facial expressions. Scientific Reports, 12(1), 109. https://doi.org/10.1038/s41598-021-03587-z.
Bould, E., & Morris, N. (2008). Role of motion signals in recognizing subtle facial expressions of emotion. British Journal of Psychology, 99(2), 167–189. https://doi.org/10.1348/000712607X206702.
Bucks, R. S., Garner, M., Tarrant, L., Bradley, B. P., & Mogg, K. (2008). Interpretation of emotionally ambiguous faces in older adults. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 63(6), P337–343. https://doi.org/10.1093/geronb/63.6.p337.
Butcher, N., & Lander, K. (2017). Exploring the motion advantage: Evaluating the contribution of familiarity and differences in facial motion. Q J Exp Psychol (Hove), 70(5), 919–929. https://doi.org/10.1080/17470218.2016.1138974.
Butcher, N., Lander, K., Fang, H., & Costen, N. (2011). The effect of motion at encoding and retrieval for same-and other‐race face recognition. British Journal of Psychology, 102(4), 931–942. https://doi.org/10.1111/j.2044-8295.2011.02060.x.
Calder, A. J., Young, A. W., Perrett, D. I., Etcoff, N. L., & Rowland, D. (1996). Categorical perception of morphed facial expressions. Visual Cognition, 3(2), 81–118. https://doi.org/10.1080/713756735.
Calvo, M. G., Avero, P., Fernandez-Martin, A., & Recio, G. (2016). Recognition thresholds for static and dynamic emotional faces. Emotion, 16(8), 1186–1200. https://doi.org/10.1037/emo0000192.
Calvo, M. G., Fernández-Martín, A., Gutiérrez-García, A., & Lundqvist, D. (2018). Selective eye fixations on diagnostic face regions of dynamic emotional expressions: KDEF-dyn database. Scientific Reports, 8(1), 17039. https://doi.org/10.1038/s41598-018-35259-w.
Calvo, M. G., Gutiérrez-García, A., & Fernández-Martín, A. (2019a). Time course of selective attention to face regions in social anxiety: eye-tracking and computational modelling. Cognition and emotion, 33(7), 1481–1488. https://doi.org/10.1080/02699931.2018.1558045.
Calvo, M. G., Krumhuber, E. G., & Fernández-Martín, A. (2019b). Visual attention mechanisms in happiness versus trustworthiness processing of facial expressions. Quarterly Journal of Experimental Psychology, 72(4), 729–741. https://doi.org/10.1177/1747021818763747.
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge. https://doi.org/10.4324/9780203771587
Cosker, D., Krumhuber, E., & Hilton, A. (2010). Perception of linear and nonlinear motion properties using a FACS validated 3D facial model. In Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization, Los Angeles, USA. https://doi.org/10.1145/1836248.1836268
Cunningham, D. W., & Wallraven, C. (2009). Dynamic information for the recognition of conversational expressions. Journal of Visualization, 9(13), 71–17. https://doi.org/10.1167/9.13.7.
Curio, C., Breidt, M., Kleiner, M., Vuong, Q. C., Giese, M. A., & Bülthoff, H. H. (2006). Semantic 3d motion retargeting for facial animation. In Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization, Boston Massachusetts, USA. https://doi.org/10.1145/1140491.1140508
Darke, H., Cropper, S. J., & Carter, O. (2019). A novel dynamic morphed stimuli set to assess sensitivity to identity and emotion attributes in faces. Frontiers in Psychology, 10, 757. https://doi.org/10.3389/fpsyg.2019.00757.
Darke, H., Sundram, S., Cropper, S. J., & Carter, O. (2021). Dynamic face processing impairments are associated with cognitive and positive psychotic symptoms across psychiatric disorders. Npj Schizophrenia, 7(1), 36. https://doi.org/10.1038/s41537-021-00166-z.
Dawel, A., Palermo, R., O’Kearney, R., & McKone, E. (2015). Children can discriminate the authenticity of happy but not sad or fearful facial expressions, and use an immature intensity-only strategy. Frontiers in Psychology, 6, 462. https://doi.org/10.3389/fpsyg.2015.00462.
Demenescu, L. R., Stan, A., Kortekaas, R., van der Wee, N. J., Veltman, D. J., & Aleman, A. (2014). On the connection between level of education and the neural circuitry of emotion perception. Frontiers in Human Neuroscience, 8, 866. https://doi.org/10.3389/fnhum.2014.00866/full.
De Stefani, E., Ardizzi, M., Nicolini, Y., Belluardo, M., Barbot, A., Bertolini, C., Garofalo, G., Bianchi, B., Coudé, G., & Murray, L. (2019). Children with facial paralysis due to Moebius syndrome exhibit reduced autonomic modulation during emotion processing. Journal of Neurodevelopmental Disorders, 11(1), 1–16. https://doi.org/10.1186/s11689-019-9272-2.
Dobs, K., Bulthoff, I., Breidt, M., Vuong, Q. C., Curio, C., & Schultz, J. (2014). Quantifying human sensitivity to spatio-temporal information in dynamic faces. Vision Research, 100, 78–87. https://doi.org/10.1016/j.visres.2014.04.009.
Dobs, K., Bulthoff, I., & Schultz, J. (2018). Use and usefulness of dynamic face stimuli for Face Perception Studies-a review of behavioral findings and methodology. Frontiers in Psychology, 9, 1355. https://doi.org/10.3389/fpsyg.2018.01355
Dong, Z., Wang, G., Lu, S., Yan, W. J., & Wang, S. J. (2021). A Brief Guide: Code for spontaneous expressions and micro-expressions in videos. Proceedings of the 1st Workshop on Facial Micro-Expression: Advanced Techniques for Facial Expressions Generation and Spotting, Ottowa, Canada. https://doi.org/10.1145/3476100.3484464.
Ekman, P., Davidson, R. J., & Friesen, W. V. (1990). The Duchenne smile: Emotional expression and brain physiology: II. Journal of Personality and Social Psychology, 58(2), 342.
Ekman, P., & Friesen, W. V. (1978). Facial action coding system. Environmental Psychology & Nonverbal Behavior.
Engelmann, J. B., & Pogosyan, M. (2013). Emotion perception across cultures: The role of cognitive mechanisms. Frontiers in Psychology, 4, 118. https://doi.org/10.3389/fpsyg.2013.00118.
Feuerriegel, D., Churches, O., Hofmann, J., & Keage, H. A. D. (2015). The N170 and face perception in psychiatric and neurological disorders: A systematic review. Clinical Neurophysiology, 126(6), 1141–1158. https://doi.org/10.1016/j.clinph.2014.09.015.
Fiorentini, C., Schmidt, S., & Viviani, P. (2012a). The identification of unfolding facial expressions. Perception, 41(5), 532–555. https://doi.org/10.1068/p7052.
Fiorentini, C., Schmidt, S., & Viviani, P. (2012). The identification of unfolding facial expressions. Perception, 41(5), 532–555.
Fischer, A. H., Kret, M. E., & Broekens, J. (2018). Gender differences in emotion perception and self-reported emotional intelligence: A test of the emotion sensitivity hypothesis. PloS One, 13(1), e0190712. https://doi.org/10.1371/journal.pone.0190712.
Foley, E., Rippon, G., Thai, N. J., Longe, O., & Senior, C. (2012). Dynamic facial expressions evoke distinct activation in the face perception network: A connectivity analysis study. Journal of Cognitive Neuroscience, 24(2), 507–520. https://doi.org/10.1162/jocn_a_00120.
Fujimura, T., & Suzuki, N. (2010). Effects of dynamic information in recognising facial expressions on dimensional and categorical judgments. Perception, 39(4), 543–552. https://doi.org/10.1068/p6257.
Gehb, G., Vesker, M., Jovanovic, B., Bahn, D., Kauschke, C., & Schwarzer, G. (2022). The relationship between crawling and emotion discrimination in 9-to 10-Month-Old infants. Brain Sciences, 12(4), 479. https://doi.org/10.3390/brainsci12040479.
Greco, C., Romani, M., Berardi, A., De Vita, G., Galeoto, G., Giovannone, F., Vigliante, M., & Sogos, C. (2021). Morphing Task: The emotion recognition process in children with attention deficit hyperactivity disorder and autism spectrum disorder. International Journal of Environmental Research and Public Health, 18(24), 13273. https://doi.org/10.3390/ijerph182413273.
Griffiths, S., Jarrold, C., Penton-Voak, I. S., Woods, A. T., Skinner, A. L., & Munafo, M. R. (2019). Impaired recognition of Basic emotions from facial expressions in Young People with Autism Spectrum Disorder: Assessing the importance of expression intensity. Journal of Autism and Developmental Disorders, 49(7), 2768–2778. https://doi.org/10.1007/s10803-017-3091-7.
Gunnery, S. D., & Ruben, M. A. (2016). Perceptions of Duchenne and Non-duchenne smiles: A meta-analysis. Cognition and Emotion, 30(3), 501–515. https://doi.org/10.1080/02699931.2015.1018817.
Gutiérrez-García, A., Fernández-Martín, A., Líbano, D., M., & Calvo, M. G. (2019). Selective gaze direction and interpretation of facial expressions in social anxiety. Personality and Individual Differences, 147, 297–305. https://doi.org/10.1016/j.paid.2019.04.034.
Hadjikhani, N., Zurcher, N. R., Lassalle, A., Hippolyte, L., Ward, N., & Johnels, J. (2017). The effect of constraining eye-contact during dynamic emotional face perception—an fMRI study. Social Cognitive and Affective Neuroscience, 12(7), 1197–1207. https://doi.org/10.1093/scan/nsx046.
Hernández-Gutiérrez, D., Rahman, R. A., Martín-Loeches, M., Muñoz, F., Schacht, A., & Sommer, W. (2018). Does dynamic information about the speaker’s face contribute to semantic speech processing? ERP evidence. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 104, 12–25. https://doi.org/10.1016/j.cortex.2018.03.031.
Hess, U., Blairy, S., & Kleck, R. E. (1997). The intensity of emotional facial expressions and decoding accuracy. Journal of Nonverbal Behavior, 21, 241–257. https://doi.org/10.1023/A:1024952730333.
Hoffmann, H., Traue, H. C., Limbrecht-Ecklundt, K., Walter, S., & Kessler, H. (2013). Static and dynamic presentation of emotions in different facial areas: Fear and surprise show influences of temporal and spatial properties. Psychology, 4(08), 663. https://doi.org/10.4236/psych.2013.48094.
Holland, C. A. C., Ebner, N. C., Lin, T., & Samanez-Larkin, G. R. (2019). Emotion identification across adulthood using the dynamic FACES database of emotional expressions in younger, middle aged, and older adults. Cognition and Emotion, 33(2), 245–257. https://doi.org/10.1080/02699931.2018.1445981.
Japee, S., Jordan, J., Licht, J., Lokey, S., Consortium, M. S. R., Chen, G., Snow, J., Jabs, E. W., Webb, B. D., & Engle, E. C. (2022). Inability to make facial expressions dampens emotion perception. bioRxiv, 2022–2010. 2011.510399. https://doi.org/10.1101/2022.10.11.510399
Kamachi, M., Bruce, V., Mukaida, S., Gyoba, J., Yoshikawa, S., & Akamatsu, S. (2013). Dynamic properties influence the perception of facial expressions. Perception, 42(11), 1266–1278. https://doi.org/10.1068/p3131.
Kamachi, M., Bruce, V., Mukaida, S., Gyoba, J., Yoshikawa, S., & Akamatsu, S. (2013). Dynamic properties influence the perception of facial expressions. Perception, 42(11), 1266–1278. https://doi.org/10.1068/p3131n.
Kaufman, J., & Johnston, P. J. (2014). Facial motion engages predictive visual mechanisms. PLOS ONE, 9(3), e91038. https://doi.org/10.1371/journal.pone.0091038.
Kazak, A. E. (2018). Editorial: Journal article reporting standards. American Psychologist, 73(1), 1–2. https://doi.org/10.1037/amp0000263.
Kessler, H., Doyen-Waldecker, C., Hofer, C., Hoffmann, H., Traue, H. C., & Abler, B. (2011). Neural correlates of the perception of dynamic versus static facial expressions of emotion. Psychosocial medicine, 8, Doc03. https://doi.org/10.3205/psm000072.
Khosdelazad, S., Jorna, L. S., McDonald, S., Rakers, S. E., Huitema, R. B., Buunk, A. M., & Spikman, J. M. (2020). Comparing static and dynamic emotion recognition tests: Performance of healthy participants. PLOS ONE, 15(10), e0241297. https://doi.org/10.1371/journal.pone.0241297.
Kilts, C. D., Egan, G., Gideon, D. A., Ely, T. D., & Hoffman, J. M. (2003). Dissociable neural pathways are involved in the recognition of emotion in static and dynamic facial expressions. Neuroimage, 18(1), 156–168. https://doi.org/10.1006/nimg.2002.1323.
Korolkova, O. A. (2018a). Adaptation or assimilation? Sequential effects in the perception of dynamic and static facial expressions of emotion. Российский журнал когнитивной науки, 5(2), 18–34. https://doi.org/10.1016/j.visres.2017.10.007.
Korolkova, O. A. (2018b). The role of temporal inversion in the perception of realistic and morphed dynamic transitions between facial expressions. Vision Research, 143, 42–51. https://doi.org/10.1016/j.visres.2017.10.007.
Kosonogov, V., Kovsh, E., & Vorobyeva, E. (2022). Event-related potentials during Verbal Recognition of naturalistic neutral-to-emotional dynamic facial expressions. Applied Sciences, 12(15), 7782. https://doi.org/10.3390/app12157782.
Krumhuber, E. G., Kappas, A., & Manstead, A. S. (2013). Effects of dynamic aspects of facial expressions: A review. Emotion Review, 5(1), 41–46. https://doi.org/10.1177/1754073912451349.
Krumhuber, E. G., & Manstead, A. S. (2009). Can Duchenne smiles be feigned? New evidence on felt and false smiles. Emotion, 9(6), 807. https://doi.org/10.1037/a0017844.
Krumhuber, E. G., Manstead, A. S., Cosker, D., Marshall, D., Rosin, P. L., & Kappas, A. (2007). Facial dynamics as indicators of trustworthiness and cooperative behavior. Emotion, 7(4), 730. https://doi.org/10.1037/1528-3542.7.4.730.
Krumhuber, E. G., & Scherer, K. R. (2016). The look of fear from the eyes varies with the dynamic sequence of facial actions. Swiss Journal of Psychology. https://doi.org/10.1024/1421-0185/a000166.
Krumhuber, E. G., Skora, L. I., Hill, H. C. H., & Lander, K. (2023). The role of facial movements in emotion recognition. Nature Reviews Psychology. https://doi.org/10.1038/s44159-023-00172-1
Kunecke, J., Hildebrandt, A., Recio, G., Sommer, W., & Wilhelm, O. (2014). Facial EMG responses to emotional expressions are related to emotion perception ability. Plos one, 9(1), e84053. https://doi.org/10.1371/journal.pone.0084053.
LaBar, K. S., Crupain, M. J., Voyvodic, J. T., & McCarthy, G. (2003). Dynamic perception of facial affect and identity in the human brain. Cerebral Cortex, 13(10), 1023–1033. https://doi.org/10.1093/cercor/13.10.1023.
Lassalle, A., Åsberg Johnels, J., Zürcher, N. R., Hippolyte, L., Billstedt, E., Ward, N., Lemonnier, E., Gillberg, C., & Hadjikhani, N. (2017). Hypersensitivity to low intensity fearful faces in autism when fixation is constrained to the eyes. Human Brain Mapping, 38(12), 5943–5957. https://doi.org/10.1002/hbm.23800.
Li, J., He, D., Zhou, L., Zhao, X., Zhao, T., Zhang, W., & He, X. (2019). The effects of facial attractiveness and familiarity on facial expression recognition. Front Psychol, 10, 2496. https://doi.org/10.3389/fpsyg.2019.02496.
Li, R., Ran, G., & Zhang, Q. (2022). The recognition of dynamic-emotional faces in individuals with high and low social anxiety: An ERP study. Neuroscience Letters, 768, 136360. https://doi.org/10.1016/j.neulet.2021.136360.
Livingstone, S. R., & Russo, F. A. (2018). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PloS One, 13(5), e0196391. https://doi.org/10.1371/journal.pone.0196391.
Macinska, S., Lindsay, S., & Jellema, T. (2023). Visual attention to dynamic emotional faces in adults on the autism spectrum. Journal of autism and developmental disorders, 1–13. https://doi.org/10.1177/1747021818763747
Malatesta, G., D’Anselmo, A., Prete, G., Lucafò, C., Faieta, L., & Tommasi, L. (2023). The predictive role of the posterior cerebellum in the processing of dynamic emotions. The Cerebellum. https://doi.org/10.1007/s12311-023-01574-w
Mateus, C., Lemos, R., Silva, M. F., Reis, A., Fonseca, P., Oliveiros, B., & Castelo-Branco, M. (2013). Aging of low and high level vision: From chromatic and achromatic contrast sensitivity to local and 3D object motion perception. PloS One, 8(1), e55348. https://doi.org/10.1371/journal.pone.0055348.
Mavadati, M., Sanger, P., & Mahoor, M. H. (2016). Extended disfa dataset: Investigating posed and spontaneous facial expressions. proceedings of the IEEE conference on computer vision and pattern recognition workshops, https://doi.org/10.1109/CVPRW.2016.182
Mayes, A. K., Pipingas, A., Silberstein, R. B., & Johnston, P. (2009). Steady state visually evoked potential correlates of static and dynamic emotional face processing. Brain Topography, 22(3), 145–157. https://doi.org/10.1007/s10548-009-0106-5.
McLellan, T., Johnston, L., Dalrymple-Alford, J., & Porter, R. (2010). Sensitivity to genuine versus posed emotion specified in facial displays. Cognition and Emotion, 24(8), 1277–1292. https://doi.org/10.1080/02699930903306181.
Mühlberger, A., Wieser, M. J., Herrmann, M. J., Weyers, P., Tröger, C., & Pauli, P. (2009). Early cortical processing of natural and artificial emotional faces differs between lower and higher socially anxious persons. Journal of Neural Transmission, 116(6), 735–746. https://doi.org/10.1007/s00702-008-0108-6.
Naples, A., Nguyen-Phuc, A., Coffman, M., Kresse, A., Faja, S., Bernier, R., & McPartland, J. C. (2015). A computer-generated animated face stimulus set for psychophysiological research. Behavior Research Methods, 47(2), 562–570. https://doi.org/10.3758/s13428-014-0491-x.
Oda, M., & Isono, K. (2008). Effects of time function and expression speed on the intensity and realism of facial expressions. 2008 IEEE International Conference on Systems, Man and Cybernetics, https://doi.org/10.1109/ICSMC.2008.4811429
Pantic, M., & Patras, I. (2006). Dynamics of facial expression: Recognition of facial actions and their temporal segments from face profile image sequences. IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics), 36(2), 433–449. https://doi.org/10.1109/TSMCB.2005.859075.
Pelphrey, K. A., Morris, J. P., McCarthy, G., & Labar, K. S. (2007). Perception of dynamic changes in facial affect and identity in autism. Social Cognitive and Affective Neuroscience, 2(2), 140–149. https://doi.org/10.1093/scan/nsm010.
Philip, L., Martin, J. C., & Clavel, C. (2018). Rapid Facial Reactions in response to facial expressions of emotion displayed by real Versus virtual faces. Iperception, 9(4), 2041669518786527. https://doi.org/10.1177/2041669518786527.
Pitcher, D., Duchaine, B., & Walsh, V. (2014). Combined TMS and FMRI reveal dissociable cortical pathways for dynamic and static face perception. Current Biology, 24(17), 2066–2070. https://doi.org/10.1016/j.cub.2014.07.060.
Pitcher, D., Ianni, G., & Ungerleider, L. G. (2019). A functional dissociation of face-, body-and scene-selective brain areas based on their response to moving and static stimuli. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-44663-9.
Prochnow, D., Hoing, B., Kleiser, R., Lindenberg, R., Wittsack, H. J., Schafer, R., Franz, M., & Seitz, R. J. (2013). The neural correlates of affect reading: An fMRI study on faces and gestures. Behavioural Brain Research, 237, 270–277. https://doi.org/10.1016/j.bbr.2012.08.050.
Quadrelli, E., Roberti, E., Polver, S., Bulf, H., & Turati, C. (2021). Sensorimotor activity and Network Connectivity to dynamic and static emotional faces in 7-Month-Old infants. Brain Sci, 11(11), 1396. https://doi.org/10.3390/brainsci11111396.
Recio, G. (2013). Perception of dynamic facial expressions of emotion. https://doi.org/10.18452/16697
Reinl, M., & Bartels, A. (2014). Face processing regions are sensitive to distinct aspects of temporal sequence in facial dynamics. Neuroimage 102, 2, 407–415. https://doi.org/10.1016/j.neuroimage.2014.08.011.
Risko, E. F., Laidlaw, K. E., Freeth, M., Foulsham, T., & Kingstone, A. (2012). Social attention with real versus reel stimuli: Toward an empirical approach to concerns about ecological validity. Frontiers in Human Neuroscience, 6, 143. https://doi.org/10.3389/fnhum.2012.00143.
Roberts, S. O., Bareket-Shavit, C., Dollins, F. A., Goldie, P. D., & Mortenson, E. (2020). Racial inequality in Psychological Research: Trends of the past and recommendations for the future. Perspectives on Psychological Science, 15(6), 1295–1309. https://doi.org/10.1177/1745691620927709.
Rymarczyk, K., Biele, C., Grabowska, A., & Majczynski, H. (2011). EMG activity in response to static and dynamic facial expressions. International Journal of Psychophysiology, 79(2), 330–333. https://doi.org/10.1016/j.ijpsycho.2010.11.001.
Rymarczyk, K., Zurawski, L., Jankowiak-Siuda, K., & Szatkowska, I. (2018). Neural correlates of Facial Mimicry: Simultaneous measurements of EMG and BOLD responses during perception of dynamic compared to Static Facial expressions. Frontiers in Psychology, 9, 52. https://doi.org/10.3389/fpsyg.2018.00052.
Rymarczyk, K., Zurawski, L., Jankowiak-Siuda, K., & Szatkowska, I. (2019). Empathy in Facial Mimicry of Fear and Disgust: Simultaneous EMG-fMRI recordings during Observation of Static and dynamic facial expressions. Frontiers in Psychology, 10, 701. https://doi.org/10.3389/fpsyg.2019.00701.
Sato, W., & Yoshikawa, S. (2004). The dynamic aspects of emotional facial expressions. Cognition and Emotion, 18(5), 701–710. https://doi.org/10.1080/02699930341000176.
Sato, W., & Yoshikawa, S. (2007). Spontaneous facial mimicry in response to dynamic facial expressions. Cognition, 104(1), 1–18. https://doi.org/10.1016/j.cognition.2006.05.001.
Schmidt, K. L., Ambadar, Z., Cohn, J. F., & Reed, L. I. (2006). Movement differences between deliberate and spontaneous facial expressions: Zygomaticus major action in smiling. Journal of Nonverbal Behavior, 30(1), 37–52. https://doi.org/10.1007/s10919-005-0003-x.
Schonenberg, M., Schneidt, A., Wiedemann, E., & Jusyte, A. (2019). Processing of dynamic affective information in adults with ADHD. Journal of Attention Disorders, 23(1), 32–39. https://doi.org/10.1177/1087054715577992.
Shamay-Tsoory, S. G., & Mendelsohn, A. (2019). Real-life neuroscience: An ecological approach to brain and behavior research. Perspectives on Psychological Science, 14(5), 841–859. https://doi.org/10.1177/1745691619856350.
Simões, M., Monteiro, R., Andrade, J., Mouga, S., França, F., Oliveira, G., Carvalho, P., & Castelo-Branco, M. (2018). A novel biomarker of compensatory recruitment of face emotional imagery networks in autism spectrum disorder [Original Research]. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00791
Srinivasan, R., Golomb, J. D., & Martinez, A. M. (2016). A Neural basis of facial action recognition in humans. Journal of Neuroscience, 36(16), 4434–4442. https://doi.org/10.1523/JNEUROSCI.1704-15.2016.
Tcherkassof, A., Bollon, T., Dubois, M., Pansu, P., & Adam, J. M. (2007). Facial expressions of emotions: A methodological contribution to the study of spontaneous and dynamic emotional faces. European Journal of Social Psychology, 37(6), 1325–1345. https://doi.org/10.1002/ejsp.427.
Trautmann-Lengsfeld, S. A., Dominguez-Borras, J., Escera, C., Herrmann, M., & Fehr, T. (2013). The perception of dynamic and static facial expressions of happiness and disgust investigated by ERPs and fMRI constrained source analysis. PloS One, 8(6), e66997. https://doi.org/10.1371/journal.pone.0066997.
Trautmann, S. A., Fehr, T., & Herrmann, M. (2009). Emotions in motion: Dynamic compared to static facial expressions of disgust and happiness reveal more widespread emotion-specific activations. Brain Research, 1284, 100–115. https://doi.org/10.1016/j.brainres.2009.05.075.
Uono, S., Sato, W., & Toichi, M. (2010). Brief report: Representational momentum for dynamic facial expressions in pervasive developmental disorder. Journal of Autism and Developmental Disorders, 40(3), 371–377. https://doi.org/10.1007/s10803-009-0870-9.
van der Schalk, J., Hawk, S. T., Fischer, A. H., & Doosje, B. (2011). Moving faces, looking places: Validation of the Amsterdam Dynamic Facial expression set (ADFES). Emotion, 11(4), 907–920. https://doi.org/10.1037/a0023853.
Ventura-Bort, C., Panza, D., & Weymar, M. (2023). Words matter when inferring emotions: A conceptual replication and extension. Cognition and emotion, 37(3), 529–543. https://doi.org/10.1080/02699931.2023.2183491.
Wallraven, C., Breidt, M., Cunningham, D. W., & Bülthoff, H. H. (2008). Evaluating the perceptual realism of animated facial expressions. ACM Transactions on Applied Perception (TAP), 4(4), 1–20. https://doi.org/10.1145/1278760.1278764.
Wehrle, T., Kaiser, S., Schmidt, S., & Scherer, K. R. (2000). Studying the dynamics of emotional expression using synthesized facial muscle movements. Journal of Personality and Social Psychology, 78(1), 105. https://doi.org/10.1037/0022-3514.78.1.105.
Wróbel, M., & Olszanowski, M. (2019). Emotional reactions to dynamic morphed facial expressions: A new method to induce emotional contagion. Roczniki Psychologiczne, 22(1), 91–102. https://doi.org/10.18290/rpsych.2019.22.1-6.
Yitzhak, N., Gilaie-Dotan, S., & Aviezer, H. (2018). The contribution of facial dynamics to subtle expression recognition in typical viewers and developmental visual agnosia. Neuropsychologia, 117, 26–35. https://doi.org/10.1016/j.neuropsychologia.2018.04.035.
Zhao, R., Gan, Q., Wang, S., & Ji, Q. (2016). Facial Expression Intensity Estimation Using Ordinal Information. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), https://doi.org/10.1109/cvpr.2016.377
Zloteanu, M., Krumhuber, E. G., & Richardson, D. C. (2018). Detecting genuine and deliberate displays of Surprise in Static and dynamic faces. Frontiers in Psychology, 9, 1184. https://doi.org/10.3389/fpsyg.2018.01184.
Zupan, B., & Eskritt, M. (2023). Facial and vocal emotion recognition in adolescence: A systematic review. Adolescent Research Review. https://doi.org/10.1007/s40894-023-00219-7