A Distance-Based Kernel Association Test Based on the Generalized Linear Mixed Model for Correlated Microbiome Studies

Hyunwook Koh1, Yutong Li2, Xiang Zhan3, Jun Chen4, Ni Zhao1
1Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
2School of Physics, Peking University, Beijing, China
3Department of Public Health Sciences, Pennsylvania State University, Hershey, PA, United States
4Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson, 2001, A new method for non-parametric multivariate analysis of variance, Austral. Ecol., 26, 32, 10.1046/j.1442-9993.2001.01070.x

Arslan, 2014, Obesity, fatty liver disease and intestinal microbiota, World J. Gastroenterol., 20, 16452, 10.3748/wjg.v20.i44.16452

Bandera, 2018, Altered gut microbiome composition in HIV infection: causes, effects and potential intervention, Curr. Opin. HIV AIDS, 13, 73, 10.1097/COH.0000000000000429

Borren, 2018, Differences in clinical course, genetics, and the microbiome between familial and sporadic inflammatory bowel diseases, J. Crohns. Colitis, 12, 525, 10.1093/ecco-jcc/jjx154

Bray, 1957, An ordination of the upland forest communities of Southern Wisconsin, Ecol. Monogr., 27, 32549, 10.2307/1942268

Breslow, 1993, Approximate inference in generalized linear mixed models, J. Am. Stat. Assoc., 88, 9, 10.1080/01621459.1993.10594284

Caporaso, 2010, QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 7, 335, 10.1038/nmeth.f.303

Charlson, 2010, Disordered microbial communities in the upper respiratory tract of cigarette smokers, PLoS ONE., 5, 12, 10.1371/journal.pone.0015216

Chen, 2016, A two-part mixed-effects model for analyzing longitudinal microbiome compositional data, Bioinformatics, 32, 2611, 10.1093/bioinformatics/btw308

Chen, 2013, Sequence kernel association test for quantitative traits in family samples, Genet. Epidemiol., 37, 196, 10.1002/gepi.21703

Chen, 2012, Associating microbiome composition with environmental covariates using generalized UniFrac distances, Bioinformatics, 28, 2106, 10.1093/bioinformatics/bts342

Cristianini, 2000, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods., 10.1017/CBO9780511801389

Goodrich, 2014, Human genetics shape the gut microbiome, Cell, 159, 798, 10.1016/j.cell.2014.09.053

Hamady, 2009, Microbial community profiling for human microbiome projects: tools, techniques, Genome Res., 19, 1141, 10.1101/gr.085464.108

Harville, 1977, Maximum likelihood approaches to variance component estimation and to related problems, J. Am. Stat. Assoc., 72, 320, 10.1080/01621459.1977.10480998

Jaccard, 1912, The distribution of the flora in the alpine zone, New Phytol, 11, 37, 10.1111/j.1469-8137.1912.tb05611.x

Knights, 2013, Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome, Gut, 62, 1505, 10.1136/gutjnl-2012-303954

Koh, 2018, An adaptive microbiome α-diversity-based association analysis method, Sci. Rep., 8, 18026, 10.1038/s41598-018-36355-7

Koh, 2017, A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping, Microbiome, 5, 45, 10.1186/s40168-017-0262-x

Koh, 2018, A highly adaptive microbiome-based association test for survival traits, BMC Genom., 19, 210, 10.1186/s12864-018-4599-8

Laird, 1982, Random-effects models for longitudinal data, Biometrics, 38, 963, 10.2307/2529876

Li, 2015, Microbiome, metagenomics, and high-dimensional compositional data analysis, Annu. Rev. Stat. Appl., 2, 73, 10.1146/annurev-statistics-010814-020351

Lin, 1997, Variance component testing in generalized linear models with random effects, Biometrika, 84, 309, 10.1093/biomet/84.2.309

Liu, 2007, Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models, Biometrics, 63, 1079, 10.1111/j.1541-0420.2007.00799.x

Liu, 2017, Oxalobacter formigenes-associated host features and microbial community structures examined using the American Gut Project, Microbiome, 5, 108, 10.1186/s40168-017-0316-0

Lozupone, 2007, Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities, Appl. Environ. Microbiol., 73, 1576, 10.1128/AEM.01996-06

Lozupone, 2005, UniFrac: a new phylogenetic method for comparing microbial communities, Appl. Environ. Microbiol., 71, 8228, 10.1128/AEM.71.12.8228-8235.2005

Mallick, 2017, Experimental design and quantitative analysis of microbial community multiomics, Genome Biol., 18, 228, 10.1186/s13059-017-1359-z

McArdle, 2001, Fitting multivariate models to community data: a comment on distance-based redundancy analysis, Ecology., 82, 290, 10.1890/0012-9658(2001)082<0290:FMMTCD>2.0.CO;2

Min, 2005, Random effect models for repeated measures for zero-inflated count data, Stat. Model., 5, 1, 10.1191/1471082X05st084oa

Mosimann, 1962, On the compound multinomial distribution, the multivariate β-distribution, and correlations among proportions, Biometrika, 49, 65, 10.1093/biomet/49.1-2.65

Plantinga, 2017, MiRKAT-S: a community-level test of association between the microbiota and survival times, Microbiome, 5, 17, 10.1186/s40168-017-0239-9

Qin, 2012, A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature, 490, 55, 10.1038/nature11450

Reynolds, 2006, Clustering rules: a comparison of partitioning and hierarchical clustering algorithms, J. Math. Model. Algorithms, 5, 474, 10.1007/s10852-005-9022-1

Schifano, 2012, SNP set association analysis for familial data, Genet. Epidemiol., 36, 797, 10.1002/gepi.21676

Schloss, 2014, The dynamics of a family's gut microbiota reveal variations on a theme, Microbiome, 2, 25, 10.1186/2049-2618-2-25

Sneath, 1975, Numerical taxonomy: the principles and practice of numerical classification, Syst. Zool., 24, 263, 10.2307/2412767

Tang, 2016, PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances, Bioinformatics, 32, 2618, 10.1093/bioinformatics/btw311

Thomas, 2012, Metagenomics - a guide from sampling to data analysis, Microb. Inform. Exp., 2, 3, 10.1186/2042-5783-2-3

Wang, 2017, Longitudinal SNP-set association analysis of quantitative phenotypes, Genet. Epidemiol., 41, 81, 10.1002/gepi.22016

Weiss, 2017, Normalization and microbial differential abundance strategies depend upon data characteristics, Microbiome, 5, 27, 10.1186/s40168-017-0237-y

Winkler, 2015, Multi-level block permutation, NeuroImage, 123, 253, 10.1016/j.neuroimage.2015.05.092

Wu, 2016, An adaptive association test for microbiome data, Genome Med., 8, 56, 10.1186/s13073-016-0302-3

Yang, 2017, Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of Parkinson's disease, Front. Aging Neurosci., 9, 441, 10.3389/fnagi.2017.00441

Zhan, 2017, A fast small-sample kernel independence test for microbiome community-level association analysis, Biometrics, 73, 1453, 10.1111/biom.12684

Zhan, 2018, A small-sample kernel association test for correlated data with application to microbiome association studies, Genet. Epidemiol., 42, 772, 10.1002/gepi.22160

Zhang, , Antibiotic-induced acceleration of type 1 diabetes alters maturation of innate intestinal immunity, eLife, 7, e37816, 10.7554/eLife.37816

Zhang, 2017, Negative binomial mixed models for analyzing microbiome count data, BMC Bioinform., 18, 4, 10.1186/s12859-016-1441-7

Zhang, , Negative Binomial mixed models for analyzing longitudinal microbiome data, Front. Microbiol., 9, 1683, 10.3389/fmicb.2018.01683

Zhang, 2014, Alzheimer's disease neuroimaging initiative. Testing for association with multiple traits in generalized estimating equations, with application to neuroimaging data, NeuroImage, 96, 309, 10.1016/j.neuroimage.2014.03.061

Zhao, 2015, Testing in microbiome-profiling studies with MiRKAT, the microbiome regression-based kernel association test, Am. J. Hum. Genet., 96, 797, 10.1016/j.ajhg.2015.04.003

Zitvogel, 2015, Cancer and the gut microbiota: an unexpected link, Sci. Transl. Med., 7, 271, 10.1126/scitranslmed.3010473