A Distance-Based Kernel Association Test Based on the Generalized Linear Mixed Model for Correlated Microbiome Studies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, 2001, A new method for non-parametric multivariate analysis of variance, Austral. Ecol., 26, 32, 10.1046/j.1442-9993.2001.01070.x
Arslan, 2014, Obesity, fatty liver disease and intestinal microbiota, World J. Gastroenterol., 20, 16452, 10.3748/wjg.v20.i44.16452
Bandera, 2018, Altered gut microbiome composition in HIV infection: causes, effects and potential intervention, Curr. Opin. HIV AIDS, 13, 73, 10.1097/COH.0000000000000429
Borren, 2018, Differences in clinical course, genetics, and the microbiome between familial and sporadic inflammatory bowel diseases, J. Crohns. Colitis, 12, 525, 10.1093/ecco-jcc/jjx154
Bray, 1957, An ordination of the upland forest communities of Southern Wisconsin, Ecol. Monogr., 27, 32549, 10.2307/1942268
Breslow, 1993, Approximate inference in generalized linear mixed models, J. Am. Stat. Assoc., 88, 9, 10.1080/01621459.1993.10594284
Caporaso, 2010, QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 7, 335, 10.1038/nmeth.f.303
Charlson, 2010, Disordered microbial communities in the upper respiratory tract of cigarette smokers, PLoS ONE., 5, 12, 10.1371/journal.pone.0015216
Chen, 2016, A two-part mixed-effects model for analyzing longitudinal microbiome compositional data, Bioinformatics, 32, 2611, 10.1093/bioinformatics/btw308
Chen, 2013, Sequence kernel association test for quantitative traits in family samples, Genet. Epidemiol., 37, 196, 10.1002/gepi.21703
Chen, 2012, Associating microbiome composition with environmental covariates using generalized UniFrac distances, Bioinformatics, 28, 2106, 10.1093/bioinformatics/bts342
Cristianini, 2000, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods., 10.1017/CBO9780511801389
Hamady, 2009, Microbial community profiling for human microbiome projects: tools, techniques, Genome Res., 19, 1141, 10.1101/gr.085464.108
Harville, 1977, Maximum likelihood approaches to variance component estimation and to related problems, J. Am. Stat. Assoc., 72, 320, 10.1080/01621459.1977.10480998
Jaccard, 1912, The distribution of the flora in the alpine zone, New Phytol, 11, 37, 10.1111/j.1469-8137.1912.tb05611.x
Knights, 2013, Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome, Gut, 62, 1505, 10.1136/gutjnl-2012-303954
Koh, 2018, An adaptive microbiome α-diversity-based association analysis method, Sci. Rep., 8, 18026, 10.1038/s41598-018-36355-7
Koh, 2017, A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping, Microbiome, 5, 45, 10.1186/s40168-017-0262-x
Koh, 2018, A highly adaptive microbiome-based association test for survival traits, BMC Genom., 19, 210, 10.1186/s12864-018-4599-8
Li, 2015, Microbiome, metagenomics, and high-dimensional compositional data analysis, Annu. Rev. Stat. Appl., 2, 73, 10.1146/annurev-statistics-010814-020351
Lin, 1997, Variance component testing in generalized linear models with random effects, Biometrika, 84, 309, 10.1093/biomet/84.2.309
Liu, 2007, Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models, Biometrics, 63, 1079, 10.1111/j.1541-0420.2007.00799.x
Liu, 2017, Oxalobacter formigenes-associated host features and microbial community structures examined using the American Gut Project, Microbiome, 5, 108, 10.1186/s40168-017-0316-0
Lozupone, 2007, Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities, Appl. Environ. Microbiol., 73, 1576, 10.1128/AEM.01996-06
Lozupone, 2005, UniFrac: a new phylogenetic method for comparing microbial communities, Appl. Environ. Microbiol., 71, 8228, 10.1128/AEM.71.12.8228-8235.2005
Mallick, 2017, Experimental design and quantitative analysis of microbial community multiomics, Genome Biol., 18, 228, 10.1186/s13059-017-1359-z
McArdle, 2001, Fitting multivariate models to community data: a comment on distance-based redundancy analysis, Ecology., 82, 290, 10.1890/0012-9658(2001)082<0290:FMMTCD>2.0.CO;2
Min, 2005, Random effect models for repeated measures for zero-inflated count data, Stat. Model., 5, 1, 10.1191/1471082X05st084oa
Mosimann, 1962, On the compound multinomial distribution, the multivariate β-distribution, and correlations among proportions, Biometrika, 49, 65, 10.1093/biomet/49.1-2.65
Plantinga, 2017, MiRKAT-S: a community-level test of association between the microbiota and survival times, Microbiome, 5, 17, 10.1186/s40168-017-0239-9
Qin, 2012, A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature, 490, 55, 10.1038/nature11450
Reynolds, 2006, Clustering rules: a comparison of partitioning and hierarchical clustering algorithms, J. Math. Model. Algorithms, 5, 474, 10.1007/s10852-005-9022-1
Schifano, 2012, SNP set association analysis for familial data, Genet. Epidemiol., 36, 797, 10.1002/gepi.21676
Schloss, 2014, The dynamics of a family's gut microbiota reveal variations on a theme, Microbiome, 2, 25, 10.1186/2049-2618-2-25
Sneath, 1975, Numerical taxonomy: the principles and practice of numerical classification, Syst. Zool., 24, 263, 10.2307/2412767
Tang, 2016, PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances, Bioinformatics, 32, 2618, 10.1093/bioinformatics/btw311
Thomas, 2012, Metagenomics - a guide from sampling to data analysis, Microb. Inform. Exp., 2, 3, 10.1186/2042-5783-2-3
Wang, 2017, Longitudinal SNP-set association analysis of quantitative phenotypes, Genet. Epidemiol., 41, 81, 10.1002/gepi.22016
Weiss, 2017, Normalization and microbial differential abundance strategies depend upon data characteristics, Microbiome, 5, 27, 10.1186/s40168-017-0237-y
Winkler, 2015, Multi-level block permutation, NeuroImage, 123, 253, 10.1016/j.neuroimage.2015.05.092
Wu, 2016, An adaptive association test for microbiome data, Genome Med., 8, 56, 10.1186/s13073-016-0302-3
Yang, 2017, Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of Parkinson's disease, Front. Aging Neurosci., 9, 441, 10.3389/fnagi.2017.00441
Zhan, 2017, A fast small-sample kernel independence test for microbiome community-level association analysis, Biometrics, 73, 1453, 10.1111/biom.12684
Zhan, 2018, A small-sample kernel association test for correlated data with application to microbiome association studies, Genet. Epidemiol., 42, 772, 10.1002/gepi.22160
Zhang, , Antibiotic-induced acceleration of type 1 diabetes alters maturation of innate intestinal immunity, eLife, 7, e37816, 10.7554/eLife.37816
Zhang, 2017, Negative binomial mixed models for analyzing microbiome count data, BMC Bioinform., 18, 4, 10.1186/s12859-016-1441-7
Zhang, , Negative Binomial mixed models for analyzing longitudinal microbiome data, Front. Microbiol., 9, 1683, 10.3389/fmicb.2018.01683
Zhang, 2014, Alzheimer's disease neuroimaging initiative. Testing for association with multiple traits in generalized estimating equations, with application to neuroimaging data, NeuroImage, 96, 309, 10.1016/j.neuroimage.2014.03.061
Zhao, 2015, Testing in microbiome-profiling studies with MiRKAT, the microbiome regression-based kernel association test, Am. J. Hum. Genet., 96, 797, 10.1016/j.ajhg.2015.04.003