A Direct Numerical Simulation analysis of pressure variation in turbulent premixed Bunsen burner flames-part 2: Surface Density Function transport statistics

Computers & Fluids - Tập 173 - Trang 147-156 - 2018
M. Klein1, D. Alwazzan2, N. Chakraborty2
1Universität der Bundeswehr München, Fakultät für Luft- und Raumfahrtechnik, Neubiberg 85577, Germany
2School of Mechanical & Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE17RU, United Kingdom

Tài liệu tham khảo

Kollmann, 1998, Pocket formation and the flame surface density equation, Proc Combust Inst, 27, 927, 10.1016/S0082-0784(98)80490-6 Boger, 1998, Direct Numerical Simulation analysis of flame surface density concept for Large Eddy Simulation of turbulent premixed combustion, Proc Combust Inst, 27, 917, 10.1016/S0082-0784(98)80489-X Chakraborty, 2011, Scalar dissipation rate approach to reaction rate closure, 76 Chakraborty, 2005, Effects of strain rate and curvature on Surface Density Function transport in turbulent premixed flames in the thin reaction zones regime, Phys Fluids, 17, 65108, 10.1063/1.1923047 Chakraborty, 2008, Influence of Lewis number on the Surface Density Function transport in the thin reaction zones regime for turbulent premixed flames, Phys Fluids, 20, 10.1063/1.2919129 Chakraborty, 2009, Effects of global flame curvature on the Surface Density Function transport in Turbulent premixed flame kernels in the Thin Reaction Zones regime, Proc Combust Inst, 32, 1435, 10.1016/j.proci.2008.06.022 Chakraborty, 2008, Effects of strain rate and curvature on Surface Density Function transport in turbulent premixed CH4–air and H2–air flames: a comparative study, Combust Flame, 154, 259, 10.1016/j.combustflame.2008.03.015 Sankaran, 2007, Structure of a spatially developing turbulent lean methane–air Bunsen flame, Proc Combust Inst, 31, 1291, 10.1016/j.proci.2006.08.025 Chakraborty, 2007, Influence of Damköhler number on turbulence-scalar interaction in premixed flames, part I: physical insight, Phys Fluids, 19 Kim, 2007, Scalar gradient and small-scale structure in turbulent premixed combustion, Phys Fluids, 19, 10.1063/1.2784943 Chakraborty, 2009, Effects of Lewis number on reactive scalar gradient alignment with local strain rate in turbulent premixed flames, Proc Combust Inst, 32, 1409, 10.1016/j.proci.2008.06.021 Hartung, 2008, Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion, Phys Fluids, 20, 10.1063/1.2896285 Cifuentes, 2014, Local flow topologies and scalar structures in a turbulent premixed flame, Phys Fluids, 26, 10.1063/1.4884555 Cifuentes, 2015, Local volumetric dilatation rate and scalar geometries in a premixed methane–air turbulent jet flame, Proc Combust Inst, 35, 1295, 10.1016/j.proci.2014.06.026 Dopazo, 2015, Strain rates normal to approaching isoscalar surfaces in a turbulent premixed flame, Combust Flame, 162, 1729, 10.1016/j.combustflame.2014.11.034 Dopazo, 2015, Micro-scale mixing in turbulent constant density reacting flows and premixed combustion, Flow Turbul Combust, 96, 547, 10.1007/s10494-015-9663-8 Dopazo, 2016, The physics of scalar gradients in turbulent premixed combustion and its relevance to modeling, Combust Sci Technol, 188, 1376, 10.1080/00102202.2016.1197919 Wang, 2017, Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame– an analysis of flame stretch and flame thickening, J Fluid Mech, 815, 511, 10.1017/jfm.2017.53 Chaudhuri, 2017, Flame thickness and conditional scalar dissipation rate in a premixed turbulent reacting jet, Combust Flame, 184, 273, 10.1016/j.combustflame.2017.02.027 Klein, M, Alwazzan, D, Chakraborty, N. A Direct Numerical Simulation analysis of pressure variation in turbulent premixed Bunsen burner flames-part 1: scalar gradient and strain rate statistics. Comput Fluids (under review). Chen, 2009, Terascale direct numerical simulations of turbulent combustion using S3D, Comput Sci Discov, 2, 10.1088/1749-4699/2/1/015001 Turns, 2011 Peters, 1998, Statistics of flame displacement speeds from computations of 2-D unsteady methane–air flames, Proc Combust Inst, 27, 833, 10.1016/S0082-0784(98)80479-7 Echekki, 1999, Analysis of the contribution of curvature to premixed flame propagation, Combust Flame, 118, 308, 10.1016/S0010-2180(99)00006-1 Pope, 1998, The evolution of surfaces in turbulence, Int J Eng Sci, 26, 445, 10.1016/0020-7225(88)90004-3 Candel, 1990, Flame stretch and the balance equation for the flame area, Combust Sci Tech, 70, 1, 10.1080/00102209008951608 Jenkins, 1999, DNS of turbulent flame kernels, 192 Peters, 2000 Klein, 2017, Flame curvature in high pressure Bunsen flames Soika, 1998, Measurement of resolved flame structure with constant Reynolds number, Proc Combust Inst, 27, 785, 10.1016/S0082-0784(98)80473-6 Hawkes, 2004, Direct numerical simulation of hydrogen-enriched lean premixed methane–air flames, Combust Flame, 138, 242, 10.1016/j.combustflame.2004.04.010 O'Young, 1997, Scalar gradient and related quantities in turbulent premixed flames, Combust Flame, 109, 683, 10.1016/S0010-2180(97)00056-4 Chen, 1998, Investigation of flame broadening in the thin reaction zones regime, Proc Combust Inst, 27, 811, 10.1016/S0082-0784(98)80476-1 Chen, 2002, Experimental investigation of three-dimensional fame front structure in premixed turbulent combustion-I: hydrocarbon/air Bunsen fames, Combust Flame, 131, 400, 10.1016/S0010-2180(02)00418-2 Chakraborty, 2004, Unsteady effects of strain rate and curvature on turbulent premixed flames in an inlet-outlet configuration, Combust Flame, 137, 129, 10.1016/j.combustflame.2004.01.007 Chakraborty, 2005, Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime, Phys Fluids, 17 Chakraborty, 2007, Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime, Proc Combust Inst, 31, 1385, 10.1016/j.proci.2006.07.184 Chakraborty, 2011, Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime turbulent premixed combustion, J Combust, 10.1155/2011/473679 Hawkes, 2004, Evaluation of models for flame stretch due to curvature in the thin reaction zones regime, Proc Combust Inst, 30, 647, 10.1016/j.proci.2004.08.106 Chakraborty, 2013, Determination of three-dimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: Direct Numerical Simulation based validation, Proc Combust Inst, 34, 1151, 10.1016/j.proci.2012.06.040