A Direct Connection Between the Bergman and Szegő Projections

Complex Analysis and Operator Theory - Tập 8 - Trang 571-579 - 2013
Steven G. Krantz1
1Department of Mathematics, Washington University in St. Louis, St. Louis, USA

Tóm tắt

We use Stokes’s theorem to establish an explicit and concrete connection between the Bergman and Szegő projections on the disc, the ball, and on strongly pseudoconvex domains.

Tài liệu tham khảo

Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et Szegö. Soc. Mat. de France Asterisque 34–35, 123–164 (1976) Chen, B.-Y., Fu, S.: Comparison of the Bergman and Szegö kernels. Adv. Math. 228, 2366–2384 (2011) Diederich, K., Fornæss, J.E.: Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions. Invent. Math. 3, 129–141 (1977) Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math. 26, 1–65 (1974) Hörmander, L.: \({\rm L}^{2}\) estimates and existence theorems for the \({\overline{\partial }}\) operator. Acta Math. 113, 89–152 (1965) Krantz, S.G.: Function Theory of Several Complex Variables, 2nd edn. American Mathematical Society, Providence (2001)