Prope huỳnh quang tỉ lệ dựa trên Dicyanomethylene-4H-Pyran cho Diazane và hình ảnh sinh học của nó

Journal of Fluorescence - Tập 29 - Trang 195-201 - 2018
Gongchun Li1, Yongxiang Liu2, Xiaopeng Yang2, Yong Ye2
1Key laboratory of Chemo/Biosensing and Detection, College of Chemistry and Chemical Engineering, Xuchang University, Xuchang, China
2College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China

Tóm tắt

Một đầu dò huỳnh quang dựa trên ICT gần hồng ngoại mang tên LX đã được tạo ra thành công. LX có giới hạn phát hiện thấp tới 22,2 nm cho thấy độ chọn lọc tuyệt vời và độ nhạy cao với diazane. LX có khả năng phát hiện chọn lọc diazane so với các loài khác trong một khoảng pH rộng (3–10). Một thay đổi màu sắc rõ rệt của dung dịch từ màu vàng sang màu cam có thể được quan sát thấy, cho phép phát hiện bằng mắt thường. Cơ chế cảm biến đã được xác định hợp lý thông qua ESI-MS và các phép tính DFT. Ngoài ra, LX đã thành công trong việc hình dung diazane trong các tế bào sống và phát hiện diazane trong các mẫu nước.

Từ khóa

#đầu dò huỳnh quang #diazane #Dicyanomethylene-4H-Pyran #cảm biến gần hồng ngoại #hình ảnh sinh học #ESI-MS #DFT

Tài liệu tham khảo

Ragnarsson U (2001) Synthetic methodologyfor alkyl substituted hydrazines. Chem Soc Rev 30:205–213 Wang J, Chen L (1995) Hydrazine detection using a tyrosinase-based inhibition biosensor. Anal Chem 67:3824–3827 Zelnick SD, Mattie DR, Stepaniak PC (2003) Occupational exposure to hydrazines: treatment of acute central nervous system toxicity. Aviat Space Environ Med 74:1285–1291 Zhang B, Yang X, Zhang R, Liu Y, Ren X, Xian M, Ye Y, Zhao Y (2017) A lysosomal-targeted two-photon fluorescent probe to sense hypochlorous acid in live cells. Anal Chem 89:10384–10390 Brown AB, Gibson TL, Baum JC, Ren T, Smith TM (2005) Fluorescence-enhancement sensingof ammonia andhydrazines via disruption of the internal hydrogen bond in a carbazolopyridinophane. Sensors Actuators B Chem 110:8–12 Feng W, Qiao Q, Leng S, Miao L, Xu Z (2016) A 1,8-naphthalimide-derived turn-on fluorescentprobe for imaging lysosomal nitric oxide in living cells. Chin Chem Lett 27:1554–1558 Li J, Yang X, Zhang D, Liu Y, Tang J, Li Y, Zhao Y, Ye Y (2018) A fluorescein-based “turn-on” fluorescence probe for hypochlorous acid detection and its application in cell imaging. Sensors Actuators B Chem 265:84–90 Batchelor-McAuley C, Banks CE, Simm AO, Jones TGJ, Compton RG (2006) The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium platedBDD microdisc array. Analyst 131:106–110 Collins GE, Latturner S, Rose-Pehrsson SL (1995) Chemiluminescence detection of hydrazine vapor. Talanta 42:543–551 Safavi A, Baezzat MR (1998) Flow injection chemiluminescence determination ofhydrazine. Anal Chim Acta 358:121–125 Collins GE, Rose- Pehrsson SL (1993) Sensitive, fluorescent detection of hydrazine via derivatization with 2,3-naphthalene dicarboxaldehyde. Anal Chim Acta 284:207–215 Collins GE, Rose-Pehrsson SL (1994) Fluorescent detection of hydrazine, monomethylhydrazine, and1,1-dimethylhydrazine by derivatization with aromatic dicarbaldehydes. Analyst 119:1907–1913 Elder DP, Snodin D, Teasdale A (2011) Control and analysis of hydrazine, hydrazides and hydrazones- genotoxic impurities in active pharmaceutical ingredients (APIs) and drug products. J Pharm Biomed Anal 54:900–910 Sun M, Bai L, Lui DQ (2009) A generic approach for the determination of trace hydrazine in drug substances using in situ derivatization-headspace GC–MS. J Pharm Biomed Anal 49:529–533 Li S, Zhang D, Xie X, Ma S, Liu Y, Xu Z, Gao Y, Ye Y (2016) A novel solvent-dependently bifunctional NIR absorptive and fluorescent ratiometric probefor detecting Fe3+/Cu2+ and its application in bioimaging. Sensors Actuators B Chem 224:661–667 Liu J, Zhou W, You T, Li F, Wang E, Dong S (1996) Detection of hydrazine, methylhydrazine, and isoniazid by capillary electrophoresis with a palladium- modified microdisk array electrode. Anal Chem 68:3350–3353 Goswami S, Aich K, Das S, Roy SB, Pakhira B, Sarkar S (2014) A reaction based colorimetric as well as fluorescence 'turn on' probe for the rapid detection of hydrazine. RSC Adv 4:14210–14214 Qian Y, Lin J, Han L, Lin L, Zhu H (2014) A resorufin-based colorimetric and fluorescent probefor live-cell monitoring ofhydrazine. Biosens Bioelectron 58:282–286 Yang X, Liu Y, Wu Y, Ren X, Zhang D, Ye Y (2017) A NIR ratiometric probe for hydrazine “naked eye” detection and its imaging in living cell. Sensors Actuators B Chem 253:488–494 Xiao L, Tu J, Sun S, Pei Z, Pei Y, Pang Y, Xu Y (2014) A fluorescent probe for hydrazine and its in vivo applications. RSC Adv 4:41807–41811 Zhang L, Zhu H, Zhao C, Gu X (2017) A near-infrared fluorescent probe for monitoring fluvastatin-stimulated endogenous H2S production. Chin Chem Lett 28:218–221 Zhao Z, Zhang G, Gao Y, Yang X, Li Y (2011) A novel detection technique of hydrazine hydrate: modality change of hydrogen bonding-induced rapidand ultrasensitive colorimetric assay. Chem Commun 47:12816–12818 Choi M, Moon J, Bae J, Lee J, Chang S (2013) Dual signaling of hydrazine by selective deprotection of dichlorofluorescein and resorufin acetates. Org Biomol Chem 11:2961–2965 Jin X, Liu C, Wang X, Huang H, Zhang X, Zhu H (2015) A flavone-based ESIPT fluorescent sensorfor detection of N2H4 in aqueous solution and gas state and its imaging in living cells. Sensors Actuators B Chem 216:141–149 Yu S, Wang S, Yu H, Feng Y, Zhang S, Zhu M, Yin H, Meng X (2015) A ratiometric two-photon fluorescent probefor hydrazine and its applications. Sensors Actuators B 220:1338–1345 Lee MH, Yoon B, Kim JS, Sessler JL (2013) Naphthalimide trifluoroacetyl acetonate:a hydrazine selective chemodosimetric sensor. Chem Sci 4:4121–4126 Chen W, Liu W, Liu XJ, Kuang YQ, Yu RQ, Jiang JH (2017) A novel fluorescent probe for sensitive detection and imaging of hydrazine in living cells. Talanta 162:225–231 Yuan L, Lin W, Zhao S, Gao W, Chen B, He L, Zhu S (2012) A unique approach to development of near- infrared fluorescent sensorsfor in vivo imaging. J Am Chem Soc 134:13510–13523 Guo Z, Park S, Yoon J, Shin I (2014) Recent progress in the development of near-infrared fluorescent probesfor bioimaging applications. Chem Soc Rev 43:16–29 Hu C, Sun W, Cao J, Gao P, Wang J, Fan J, Song F, Sun S, Peng X (2013) A ratiometric near-infrared fluorescent probe for hydrazine and its in vivo applications. Org Lett 15:4022–4025 Zhang J, Ning L, Liu J, Wang J, Yu B, Liu X, Yao X, Zhang Z, Zhang H (2015) Naked-eye and near- infrared fluorescence probe for hydrazine and its applications in in vitro and in vivo bioimaging. Anal Chem 87:9101–9107 Fan J, Sun W, Hu M, Cao J, Cheng G, Dong H, Song K, Liu Y, Sun S, Peng X (2012) An ICT-based ratiometric probe for hydrazine and its application in live cells. Chem Commun 48:8117–8119 Wang C, Liu Y, Cheng J, Song J, Zhao Y, Ye Y (2015) Efficient FRET-based fluorescent ratiometric chemosensors for Fe3+ and its application in living cells. J Lumin 157:143–148