Mẫu Thông Tin Khí Hậu Cổ Chi Tiết Cho Lưu Vực Trung Danube Trong 430 ngàn Năm Qua: Nghiên Cứu Từ Tính Chất Đá-Magnesium Và Phân Tích Màu Của Chuỗi Loess-Paleosol Zemun
Tóm tắt
Tại khu vực trung latitudes của Eurasia, các chuỗi loess-paleosol (LPS) cung cấp các hồ sơ trầm tích phổ biến nhất về sự phát triển của môi trường khí hậu trong thời kỳ Đệ Tứ. Tại lưu vực Trung Danube (MDB), các tài liệu này bao gồm ít nhất một triệu năm lịch sử khí hậu, và đôi khi chứa các phát hiện khảo cổ. Chuỗi Zemun LPS được nghiên cứu nằm ở bờ phải của sông Danube tại miền Bắc Serbia. Địa điểm này được công nhận là khu vực bảo vệ, dựa trên các hiện vật thời đồ đá cũ được tìm thấy trên bờ sông và xuất phát từ các mức độ phân lớp chưa rõ nguồn gốc của các vách đá loess dọc theo sông Danube. Nghiên cứu hiện tại nhằm cung cấp bối cảnh phân lớp, môi trường khí hậu cổ và thời gian cho Zemun LPS thông qua các phương pháp từ tính môi trường và phân tích màu. Các cuộc điều tra của chúng tôi đã dẫn đến một sơ đồ tuổi chứ chấp thuận cho phép so sánh trực tiếp với các hồ sơ tham chiếu khác đã được thành lập tốt trong MDB và các nơi khác. Hai lớp tephra tiềm năng được tạm thời phân loại là tephra L2 và Bag, vốn phổ biến cả trong MDB và xa hơn, đã được khảo sát về các thuộc tính từ tính phế liệu của chúng. Mô hình tuổi tích hợp nhận được cho thấy Zemun LPS ghi lại lịch sử chi tiết của việc tích lũy liên tục bụi khoáng từ giai đoạn Isotope Oxy Biển (MIS) 11–5a (c. 430–60 ka). Kết quả của phương pháp tích hợp của chúng tôi cho thấy sự khô hạn liên tục diễn ra trong bốn chu kỳ giữa kỷ băng hà/kỷ băng và chúng tôi thảo luận về những thay đổi tiềm năng trong mùa theo thời gian.
Từ khóa
#paleoclimate #loess-paleosol sequences #Middle Danube Basin #environmental magnetic methods #colorimetric analysisTài liệu tham khảo
Abbott, 2020, Crossing new frontiers: extending tephrochronology as a global geoscientific research tool., J. Quat. Sci., 35, 1, 10.1002/jqs.3184
Abe-Ouchi, 2013, Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume., Nature, 500, 190, 10.1038/nature12374
Anechitei-Deacu, 2014, Multi-method luminescence investigations on quartz grains of different sizes extracted from a loess section in Southeast Romania interbedding the Campanian Ignimbrite ash layer., Geochronometria, 41, 1, 10.2478/s13386-013-0143-4
Antoine, 2019, A remarkable Late Saalian (MIS 6) loess (dust) accumulation in the Lower Danube at Harletz (Bulgaria)., Quat. Sci. Rev., 207, 80, 10.1016/j.quascirev.2019.01.005
Avram, 2020, Testing polymineral post−IR IRSL and quartz SAR-OSL protocols on Middle to Late Pleistocene loess at Batajnica, Serbia., Boreas, 49, 615, 10.1111/bor.12442
Balsam, 2004, Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility., Earth Planet. Sci. Lett., 223, 335, 10.1016/j.epsl.2004.04.023
Barranco, 1989, Quantitative reassessment of brick red lutites: evidence from reflectance spectrophotometry., Mar. Geol., 89, 299, 10.1016/0025-3227(89)90082-0
Basarin, 2014, Time-scale and astronomical forcing of Serbian loess–paleosol sequences., Glob. Planet. Change, 122, 89, 10.1016/j.gloplacha.2014.08.007
Bilardello, 2020, Simulation of natural iron oxide alteration in soil: conversion of synthetic ferrihydrite to hematite without artificial dopants, observed with magnetic methods., Geochem. Geophys. Geosyst., 21, 10.1029/2020GC009037
Buggle, 2013, The progressive evolution of a continental climate in southeast-central European lowlands during the Middle Pleistocene recorded in loess paleosol sequences., Geology, 41, 771, 10.1130/G34198.1
Buggle, 2014, Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences., CATENA, 117, 4, 10.1016/j.catena.2013.06.012
Constantin, 2012, SAR-OSL dating of different grain-sized quartz from a sedimentary section in southern Romania interbedding the Campanian Ignimbrite/Y5 ash layer., Quat. Geochronol., 10, 81, 10.1016/j.quageo.2012.01.012
Day, 1977, Hysteresis properties of titanomagnetites: grain size and composition dependence., Phys. Earth Planet. Interiors, 13, 260, 10.1016/0031-9201(77)90108-X
Dearing, 1996, Frequency-dependent susceptibility measurements of environmental materials., Geophys. J. Int., 124, 228, 10.1111/j.1365-246X.1996.tb06366.x
Deaton, 1991, Visible spectroscopy; a rapid method for determining hematite and goethite concentration in geological materials., J. Sediment. Res., 61, 628, 10.1306/D4267794-2B26-11D7-8648000102C1865D
Debret, 2011, Spectrocolorimetric interpretation of sedimentary dynamics: the new “Q7/4 diagram.”, Earth Sci. Rev., 109, 1, 10.1016/j.earscirev.2011.07.002
Ding, 1993, Pedostratigraphy of Chinese loess deposits and climatic cycles in the last 2.5 Myr., CATENA, 20, 73, 10.1016/0341-8162(93)90030-S
Ding, 1994, Towards an orbital time scale for chinese loess deposits., Quat. Sci. Rev., 13, 39, 10.1016/0277-3791(94)90124-4
Ding, , Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ 18 O record: STACKED QUATERNARY CLIMATE RECORD FROM CHINESE LOESS., Paleoceanography, 17, 5, 10.1029/2001PA000725
Ding, , The loess record in southern Tajikistan and correlation with Chinese loess., Earth Planet. Sci. Lett., 200, 387, 10.1016/S0012-821X(02)00637-4
Dunlop, , Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc 1. Theoretical curves and tests using titanomagnetite data., J. Geophys. Res., 107, 10.1029/2001JB000486
Dunlop, , Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc 2. Application to data for rocks, sediments, and soils., J. Geophys. Res., 107, 10.1029/2001JB000487
Egli, 2013, VARIFORC: an optimized protocol for calculating non-regular first-order reversal curve (FORC) diagrams., Glob. Planet. Change, 110, 302, 10.1016/j.gloplacha.2013.08.003
Eyre, 1997, Frequency dependence of magnetic susceptibility for populations of single-domain grains., Geophys. J. Int., 129, 209, 10.1111/j.1365-246X.1997.tb00951.x
Fitzsimmons, 2013, The campanian ignimbrite eruption: new data on volcanic ash dispersal and its potential impact on human evolution., PLoS One, 8, 10.1371/journal.pone.0065839
Forster, 1994, The frequency dependence of low field susceptibility in loess sediments., Geophys. J. Int., 118, 636, 10.1111/j.1365-246X.1994.tb03990.x
Forster, 1996, Loess in the Czech Republic: magnetic properties and paleoclimate., Stud. Geophys. Geod., 40, 243, 10.1007/BF02300741
Gaudenyi, 2015, The stratigraphy of the Serbian Pleistocene Corbicula beds., Quat. Int., 357, 4, 10.1016/j.quaint.2014.07.050
Gavrilović, 2020, The middle and late pleniglacial (Weichselian) malacofauna of the Zemun loess-paleosol sequence, Serbia., PalZ, 94, 519, 10.1007/s12542-019-00465-y
Giaccio, 2012, Fault and basin depocentre migration over the last 2 Ma in the L’Aquila 2009 earthquake region, central Italian Apennines., Quat. Sci. Rev., 56, 69, 10.1016/j.quascirev.2012.08.016
Giaccio, 2019, Extending the tephra and palaeoenvironmental record of the Central Mediterranean back to 430 ka: a new core from Fucino Basin, central Italy., Quat. Sci. Rev., 225, 10.1016/j.quascirev.2019.106003
Giaccio, 2017, First integrated tephrochronological record for the last ∼190 kyr from the Fucino Quaternary lacustrine succession, central Italy., Quat. Sci. Rev., 158, 211, 10.1016/j.quascirev.2017.01.004
Günster, 2001, Late Pleistocene loess and their paleosols in the Granada Basin, Southern Spain., Quat. Int., 7, 241, 10.1016/S1040-6182(00)00106-3
Hambach, 2019, Interglacial, Holocene and recent dust accretion in the Danube Basin and beyond: evidence for uninterrupted dust accumulation in Eurasian dry steppe regions, International Workshop on Loess and Archeology: GEOARCHEOLOGICAL and Paleoenvironmental Research in European Loess-scapes: Abstract Book / Herausgeber: Prof. Dr. Frank Lehmkuhl, 25, 10.18154/RWTH-2019-10413
Hao, 2012, Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability., Nature, 490, 393, 10.1038/nature11493
Harrison, 2008, FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing: FORCINEL ALGORITHM., Geochem. Geophys. Geosyst., 9, 10.1029/2008GC001987
Heller, 1982, Magnetostratigraphical dating of loess deposits in China., Nature, 300, 431, 10.1038/300431a0
Heller, 1986, Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China., Geophys. Res. Lett., 13, 1169, 10.1029/GL013i011p01169
Heslop, 2000, A new astronomical timescale for the loess deposits of Northern China., Earth Planet. Sci. Lett., 184, 125, 10.1016/S0012-821X(00)00324-1
Hu, 2013, Characterizing and quantifying iron oxides in Chinese loess/paleosols: implications for pedogenesis., Earth Planet. Sci. Lett., 271, 10.1016/j.epsl.2013.03.033
Imbrie, 1980, Modeling the climatic response to orbital variations., Science, 207, 943, 10.1126/science.207.4434.943
Ji, 2002, Rapid and quantitative measurement of hematite and goethite in the chinese loess-paleosol sequence by diffuse reflectance spectroscopy., Clays Clay Minerals, 50, 208, 10.1346/000986002760832801
Jiang, 2018, A new model for transformation of ferrihydrite to hematite in soils and sediments., Geology, 46, 987, 10.1130/G45386.1
Jordanova, 2007, Palaeoclimatic implications of the magnetic record from loess/palaeosol sequence Viatovo (NE Bulgaria): palaeoclimatic implications of the magnetic record., Geophys. J. Int., 171, 1036, 10.1111/j.1365-246X.2007.03576.x
Jordanova, 2020, Diversity and peculiarities of soil formation in eolian landscapes – insights from the mineral magnetic records., Earth Planet. Sci. Lett., 531, 10.1016/j.epsl.2019.115956
King, 1991, SEDIMENTARY MAGNETISM, ENVIRONMENTAL MAGNETISM, AND MAGNETOSTRATIGRAPHY., Rev. Geophys., 29, 358, 10.1002/rog.1991.29.s1.358
Kohfeld, 2003, Glacial-interglacial changes in dust deposition on the Chinese Loess Plateau., Quat. Sci. Rev., 22, 1859, 10.1016/S0277-3791(03)00166-5
Kukla, 1989, Loess stratigraphy in Central China., Palaeogeogr. Palaeoclimatol. Palaeoecol., 72, 203, 10.1016/0031-0182(89)90143-0
Laag, 2018, The geographical extent of the “L2-Tephra”: a widespread marker horizon for the penultimate glacial (MIS 6) on the Balkan Peninsula, Abstract book, INQUA-INTAV International Field Conference and Workshop - Crossing New Frontiers - Tephra Hunt in Transylvania, 111, 10.13140/RG.2.2.29686.96325
Lagroix, 2016, Geological occurrences and relevance of iron oxides, Iron Oxides: From Nature to Applications, 9
Lagroix, 2017, A new tool for separating the magnetic mineralogy of complex mineral assemblages from low temperature magnetic behavior., Front. Earth Sci., 5, 10.3389/feart.2017.00061
Lehmkuhl, 2021, Loess landscapes of Europe – mapping, geomorphology, and zonal differentiation., Earth Sci. Rev., 215, 10.1016/j.earscirev.2020.103496
Leicher, 2016, First tephrostratigraphic results of the DEEP site record from Lake Ohrid (Macedonia and Albania)., Biogeosciences, 13, 2151, 10.5194/bg-13-2151-2016
Lisiecki, 2005, A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records., Paleoceanography, 20, 10.1029/2004PA001071
Liu, 2008, Magnetism of intermediate hydromaghemite in the transformation of 2-line ferrihydrite into hematite and its paleoenvironmental implications., J. Geophys. Res., 113, 10.1029/2007JB005207
Liu, 2016, Factors controlling magnetism of reddish brown soil profiles from calcarenites in Southern Spain: dust input or in-situ pedogenesis?, Front. Earth Sci., 4, 10.3389/feart.2016.00051
Lowe, 2011, Tephrochronology and its application: a review., Quat. Geochronol., 6, 107, 10.1016/j.quageo.2010.08.003
Lowe, 2017, Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: review and evaluation., Quat. Sci. Rev., 175, 1, 10.1016/j.quascirev.2017.08.003
Lukić, 2014, A joined rock magnetic and colorimetric perspective on the Late Pleistocene climate of Orlovat loess site (Northern Serbia)., Quat. Int., 179, 10.1016/j.quaint.2014.03.042
Machalett, 2006, The loess sequence from Remisowka (northern boundary of the Tien Shan Mountains, Kazakhstan)—Part I: luminescence dating., Quat. Int., 15, 192, 10.1016/j.quaint.2005.12.014
Maher, 1998, Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications., Palaeogeogr. Palaeoclimatol. Palaeoecol., 137, 25, 10.1016/S0031-0182(97)00103-X
Maher, 2011, The magnetic properties of Quaternary aeolian dusts and sediments, and their palaeoclimatic significance., Aeolian Res., 3, 87, 10.1016/j.aeolia.2011.01.005
Maher, 2016, Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau., Quat. Sci. Rev., 154, 23, 10.1016/j.quascirev.2016.08.004
Mannella, 2019, Palaeoenvironmental and palaeohydrological variability of mountain areas in the central Mediterranean region: a 190 ka-long chronicle from the independently dated Fucino palaeolake record (central Italy)., Quat. Sci. Rev., 210, 190, 10.1016/j.quascirev.2019.02.032
Marković, 2009, Middle and Late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia., Quat. Int., 198, 255, 10.1016/j.quaint.2008.12.004
Marković, 2011, The last million years recorded at the Stari Slankamen (Northern Serbia) loess-palaeosol sequence: revised chronostratigraphy and long-term environmental trends., Quat. Sci. Rev., 30, 1142, 10.1016/j.quascirev.2011.02.004
Marković, 2015, Danube loess stratigraphy — towards a pan-European loess stratigraphic model., Earth Sci. Rev., 148, 228, 10.1016/j.earscirev.2015.06.005
Marković, 2018, Loess correlations – between myth and reality., Palaeogeogr. Palaeoclimatol. Palaeoecol., 509, 4, 10.1016/j.palaeo.2018.04.018
Marković-Marjanović, 1970, Data concerning the stratigraphy and the fauna of the lower and middle pleistocene of Yugoslavia., Palaeogeogr. Palaeoclimatol. Palaeoecol., 8, 153, 10.1016/0031-0182(70)90008-8
Marra, 2019, Reconstruction of the MIS 5.5, 5.3 and 5.1 coastal terraces in Latium (central Italy): a re-evaluation of the sea-level history in the Mediterranean Sea during the last interglacial., Quat. Int., 525, 54, 10.1016/j.quaint.2019.09.001
Marra, 2009, Large mafic eruptions at Alban Hills Volcanic District (Central Italy): chronostratigraphy, petrography and eruptive behavior., J. Volcanol. Geothermal Res., 179, 217, 10.1016/j.jvolgeores.2008.11.009
Maxbauer, 2016, MAX UnMix: a web application for unmixing magnetic coercivity distributions., Comp. Geosci., 95, 140, 10.1016/j.cageo.2016.07.009
Meyers, 2014, astrochron
Mullins, 1973, Magnetic viscosity, quadrature susceptibility, and frequency dependence of susceptibility in single-domain assemblies of magnetite and maghemite., J. Geophys. Res., 78, 804, 10.1029/JB078i005p00804
Necula, 2013, Climatic control of magnetic granulometry in the Mircea Vodã loess/paleosol sequence (Dobrogea, Romania)., Quat. Int., 293, 5, 10.1016/j.quaint.2012.03.043
Obreht, 2017, Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for Modern Human dispersal., Sci. Rep., 7, 10.1038/s41598-017-06285-x
Obreht, 2016, Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years., Sci. Rep., 6, 10.1038/srep36334
Obreht, 2019, A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian Basin., Earth Sci. Rev., 190, 498, 10.1016/j.earscirev.2019.01.020
Peters, 2003, Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size., Phys. Chem. Earth Parts A/B/C, 28, 659, 10.1016/S1474-7065(03)00120-7
Post, 2015, Correlations between field and laboratory measurements of soil color, SSSA Special Publications, 35, 10.2136/sssaspecpub31.c3
Pötter, 2021, Disentangling sedimentary pathways for the Pleniglacial Lower Danube loess based on geochemical signatures., Front. Earth Sci., 9, 10.3389/feart.2021.600010
Pouclet, 1999, The Bag Tephra, a widespread tephrochronological marker in Middle Europe: chemical and mineralogical investigations., Bull. Volcanol., 61, 265, 10.1007/s004450050275
2020, R: A Language and Environment for Statistical Computing.
Šarić, 2008, Paleolithic and mesolithic finds from profile of the Zemun loess., Starinar, 9, 10.2298/STA0858009S
Schaetzl, 2018, Approaches and challenges to the study of loess—introduction to the LoessFest Special Issue., Quat. Res., 89, 563, 10.1017/qua.2018.15
Scheidt, 2021, Chronological assessment of the balta alba kurgan loess-paleosol section (Romania) – a comparative study on different dating methods for a robust and precise age model., Front. Earth Sci., 8, 10.3389/feart.2020.598448
Scheinost, 1998, Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils., Clays Clay Minerals, 46, 528, 10.1346/CCMN.1998.0460506
Song, 2018, Magnetic stratigraphy of the Danube loess: a composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia., J. Asian Earth Sci., 155, 68, 10.1016/j.jseaes.2017.11.012
Sümegi, 2018, New chronology of the best developed loess/paleosol sequence ofHungary capturing the past 1.1 ma: implications for correlation andproposed pan-Eurasian stratigraphic schemes., Quat. Sci. Rev., 191, 144, 10.1016/j.quascirev.2018.04.012
Sun, 2006, Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau., Quat. Sci. Rev., 25, 33, 10.1016/j.quascirev.2005.07.005
Sun, 2011, Changing color of Chinese loess: geochemical constraint and paleoclimatic significance., J. Asian Earth Sci., 40, 1131, 10.1016/j.jseaes.2010.08.006
Taylor, 2015, Magnetic anisotropy reveals the depositional and postdepositional history of a loess-paleosol sequence at Nussloch (Germany): AMS OF NUSSLOCH LOESS-PALEOSOL SEQUENCE., J. Geophys. Res. Solid Earth, 120, 2859, 10.1002/2014JB011803
Taylor, 2014, Mineral magnetic characterization of the Upper Pleniglacial Nussloch loess sequence (Germany): an insight into local environmental processes., Geophys. J. Int., 199, 1463, 10.1093/gji/ggu331
Till, 2011, Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry: SUPERPARAMAGNETIC GRAINS IN TUFF., Geochem. Geophys. Geosyst., 12, 10.1029/2011GC003648
Timar-Gabor, 2011, Thermoluminescence and optically stimulated luminescence properties of the 0.5P2O5–xBaO–(0.5-x)Li2O glass systems., Appl. Radiation Isotopes, 69, 780, 10.1016/j.apradiso.2011.01.015
Torrent, 2007, Magnetic Enhancement and Iron Oxides in the Upper Luochuan Loess-Paleosol Sequence, Chinese Loess Plateau., Soil Sci. Soc. Am. J., 71, 1570, 10.2136/sssaj2006.0328
Tsatskin, 1998, Pedosedimentary division, rock magnetism and chronology of the loess/palaeosol sequence at Roxolany (Ukraine)., Palaeogeogr. Palaeoclimatol. Palaeoecol., 143, 111, 10.1016/S0031-0182(98)00073-X
Veres, 2013, The Campanian Ignimbrite/Y5 tephra layer – a regional stratigraphic marker for Isotope Stage 3 deposits in the Lower Danube region, Romania., Quat. Int., 293, 22, 10.1016/j.quaint.2012.02.042
Veres, 2018, Short-term soil formation events in last glacial east European loess, evidence from multi-method luminescence dating., Quat. Sci. Rev., 200, 34, 10.1016/j.quascirev.2018.09.037
Wagner, 2019, Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years., Nature, 573, 256, 10.1038/s41586-019-1529-0
2015, IUSS Working Group World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources, Reports No. 106.
Wu, 2018, Pleistocene climate change inferred from multi-proxy analyses of a loess-paleosol sequence in China., J. Asian Earth Sci., 154, 428, 10.1016/j.jseaes.2017.10.007
Yang, 2003, Color reflectance of Chinese loess and its implications for climate gradient changes during the last two glacial−interglacial cycles., Geophys. Res. Lett., 30, 10.1029/2003GL018346
Zeeden, 2018, Patterns and timing of loess-paleosol transitions in Eurasia: constraints for paleoclimate studies., Glob. Planet. Change, 162, 1, 10.1016/j.gloplacha.2017.12.021
Zeeden, 2016, Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania) – implications for dust accumulation in south-eastern Europe., Quat. Sci. Rev., 154, 130, 10.1016/j.quascirev.2016.11.002