A Decade of Riboswitches
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baker, 2012, Widespread genetic switches and toxicity resistance proteins for fluoride, Science, 335, 233, 10.1126/science.1215063
Batey, 2004, Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine, Nature, 432, 411, 10.1038/nature03037
Bocobza, 2007, Riboswitch-dependent gene regulation and its evolution in the plant kingdom, Genes Dev., 21, 2874, 10.1101/gad.443907
Breaker, 2006, Riboswitches and the RNA world, 89
Breaker, 2011, Prospects for riboswitch discovery and analysis, Mol. Cell, 43, 867, 10.1016/j.molcel.2011.08.024
Butler, 2011, Structural basis of cooperative ligand binding by the glycine riboswitch, Chem. Biol., 18, 293, 10.1016/j.chembiol.2011.01.013
Cheah, 2007, Control of alternative RNA splicing and gene expression by eukaryotic riboswitches, Nature, 447, 497, 10.1038/nature05769
Chen, 2011, Mechanism for gene control by a natural allosteric group I ribozyme, RNA, 17, 1967, 10.1261/rna.2757311
Cochrane, 2007, Structural investigation of the GlmS ribozyme bound to its catalytic cofactor, Chem. Biol., 14, 97, 10.1016/j.chembiol.2006.12.005
Collins, 2007, Mechanism of mRNA destabilization by the glmS ribozyme, Genes Dev., 21, 3356, 10.1101/gad.1605307
Corbino, 2005, Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria, Genome Biol., 6, R70, 10.1186/gb-2005-6-8-r70
Croft, 2007, Thiamine biosynthesis in algae is regulated by riboswitches, Proc. Natl. Acad. Sci. USA, 104, 20770, 10.1073/pnas.0705786105
Dann, 2007, Structure and mechanism of a metal-sensing regulatory RNA, Cell, 130, 878, 10.1016/j.cell.2007.06.051
Dixon, 2010, Reengineering orthogonally selective riboswitches, Proc. Natl. Acad. Sci. USA, 107, 2830, 10.1073/pnas.0911209107
Dixon, 2012, Orthogonal riboswitches for tuneable coexpression in bacteria, Angew. Chem. Int. Ed. Engl., 51, 3620, 10.1002/anie.201109106
Edwards, 2006, Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition, Structure, 14, 1459, 10.1016/j.str.2006.07.008
Ellington, 1990, In vitro selection of RNA molecules that bind specific ligands, Nature, 346, 818, 10.1038/346818a0
Epshtein, 2003, The riboswitch-mediated control of sulfur metabolism in bacteria, Proc. Natl. Acad. Sci. USA, 100, 5052, 10.1073/pnas.0531307100
Fox, 2009, Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in Enterococcus faecalis, Proc. Natl. Acad. Sci. USA, 106, 4435, 10.1073/pnas.0812194106
Fuchs, 2006, The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase, Nat. Struct. Mol. Biol., 13, 226, 10.1038/nsmb1059
Garst, 2008, Crystal structure of the lysine riboswitch regulatory mRNA element, J. Biol. Chem., 283, 22347, 10.1074/jbc.C800120200
Gelfand, 1999, A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes, Trends Genet., 15, 439, 10.1016/S0168-9525(99)01856-9
Gilbert, 2008, Structure of the SAM-II riboswitch bound to S-adenosylmethionine, Nat. Struct. Mol. Biol., 15, 177, 10.1038/nsmb.1371
Gralla, 1974, Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA, Nature, 248, 204, 10.1038/248204a0
Grundy, 1993, tRNA as a positive regulator of transcription antitermination in B. subtilis, Cell, 74, 475, 10.1016/0092-8674(93)80049-K
Haller, 2011, Conformational capture of the SAM-II riboswitch, Nat. Chem. Biol., 7, 393, 10.1038/nchembio.562
Hollands, 2012, Riboswitch control of Rho-dependent transcription termination, Proc. Natl. Acad. Sci. USA, 109, 5376, 10.1073/pnas.1112211109
Huang, 2010, Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch, Mol. Cell, 40, 774, 10.1016/j.molcel.2010.11.026
Huang, 2011, Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch, Proc. Natl. Acad. Sci. USA, 108, 14801, 10.1073/pnas.1111701108
Jaeger, 2009, The UA_handle: a versatile submotif in stable RNA architectures, Nucleic Acids Res., 37, 215, 10.1093/nar/gkn911
Johnson, 2012, B12 cofactors directly stabilize an mRNA regulatory switch, Nature, 492, 133, 10.1038/nature11607
Kladwang, 2012, Automated RNA structure prediction uncovers a kink-turn linker in double glycine riboswitches, J. Am. Chem. Soc., 134, 1404, 10.1021/ja2093508
Klein, 2006, Structural basis of glmS ribozyme activation by glucosamine-6-phosphate, Science, 313, 1752, 10.1126/science.1129666
Lee, 2012, Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA, Nature, 486, 271, 10.1038/nature11090
Lee, 2010, An allosteric self-splicing ribozyme triggered by a bacterial second messenger, Science, 329, 845, 10.1126/science.1190713
Lemay, 2011, Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms, PLoS Genet., 7, e1001278, 10.1371/journal.pgen.1001278
Lilley, 2008, Ribozymes and RNA catalysis: introduction and primer, 1
Loh, 2009, A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes, Cell, 139, 770, 10.1016/j.cell.2009.08.046
Lu, 2008, Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism, Nat. Struct. Mol. Biol., 15, 1076, 10.1038/nsmb.1494
Mandal, 2004, A glycine-dependent riboswitch that uses cooperative binding to control gene expression, Science, 306, 275, 10.1126/science.1100829
McDaniel, 2003, Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA, Proc. Natl. Acad. Sci. USA, 100, 3083, 10.1073/pnas.0630422100
Miranda-Ríos, 2001, A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria, Proc. Natl. Acad. Sci. USA, 98, 9736, 10.1073/pnas.161168098
Mironov, 2002, Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria, Cell, 111, 747, 10.1016/S0092-8674(02)01134-0
Montange, 2006, Structure of the S-adenosylmethionine riboswitch regulatory mRNA element, Nature, 441, 1172, 10.1038/nature04819
Mulhbacher, 2010, Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways, PLoS Pathog., 6, e1000865, 10.1371/journal.ppat.1000865
Nahvi, 2002, Genetic control by a metabolite binding mRNA, Chem. Biol., 9, 1043, 10.1016/S1074-5521(02)00224-7
Nou, 1998, Coupled changes in translation and transcription during cobalamin-dependent regulation of btuB expression in Escherichia coli, J. Bacteriol., 180, 6719, 10.1128/JB.180.24.6719-6728.1998
Nou, 2000, Adenosylcobalamin inhibits ribosome binding to btuB RNA, Proc. Natl. Acad. Sci. USA, 97, 7190, 10.1073/pnas.130013897
Perkins, 2002, Biosynthesis of riboflavin, biotin, folic acid, and cobalamin, 271
Peselis, 2012, Structural insights into ligand binding and gene expression control by an adenosylcobalamin riboswitch, Nat. Struct. Mol. Biol., 19, 1182, 10.1038/nsmb.2405
Pikovskaya, 2011, Structural principles of nucleoside selectivity in a 2′-deoxyguanosine riboswitch, Nat. Chem. Biol., 7, 748, 10.1038/nchembio.631
Ravnum, 2001, An adenosyl-cobalamin (coenzyme-B12)-repressed translational enhancer in the cob mRNA of Salmonella typhimurium, Mol. Microbiol., 39, 1585, 10.1046/j.1365-2958.2001.02346.x
Ray, 2009, A stress-responsive RNA switch regulates VEGFA expression, Nature, 457, 915, 10.1038/nature07598
Ren, 2012, Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch, Nature, 486, 85, 10.1038/nature11152
Robertson, 1990, Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature, 344, 467, 10.1038/344467a0
Serganov, 2004, Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs, Chem. Biol., 11, 1729, 10.1016/j.chembiol.2004.11.018
Serganov, 2006, Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch, Nature, 441, 1167, 10.1038/nature04740
Serganov, 2008, Structural insights into amino acid binding and gene control by a lysine riboswitch, Nature, 455, 1263, 10.1038/nature07326
Serganov, 2009, Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch, Nature, 458, 233, 10.1038/nature07642
Sherman, 2012, An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches, RNA, 18, 496, 10.1261/rna.031286.111
Sinha, 2010, Reprogramming bacteria to seek and destroy an herbicide, Nat. Chem. Biol., 6, 464, 10.1038/nchembio.369
Stoddard, 2010, Free state conformational sampling of the SAM-I riboswitch aptamer domain, Structure, 18, 787, 10.1016/j.str.2010.04.006
Stormo, 2001, Do mRNAs act as direct sensors of small molecules to control their expression?, Proc. Natl. Acad. Sci. USA, 98, 9465, 10.1073/pnas.181334498
Sudarsan, 2006, Tandem riboswitch architectures exhibit complex gene control functions, Science, 314, 300, 10.1126/science.1130716
Sudarsan, 2008, Riboswitches in eubacteria sense the second messenger cyclic di-GMP, Science, 321, 411, 10.1126/science.1159519
Suess, 2004, A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo, Nucleic Acids Res., 32, 1610, 10.1093/nar/gkh321
Thore, 2006, Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand, Science, 312, 1208, 10.1126/science.1128451
Tomsic, 2008, Natural variability in S-adenosylmethionine (SAM)-dependent riboswitches: S-box elements in Bacillus subtilis exhibit differential sensitivity to SAM In vivo and in vitro, J. Bacteriol., 190, 823, 10.1128/JB.01034-07
Trausch, 2011, The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer, Structure, 19, 1413, 10.1016/j.str.2011.06.019
Tuerk, 1990, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249, 505, 10.1126/science.2200121
Verhounig, 2010, Inducible gene expression from the plastid genome by a synthetic riboswitch, Proc. Natl. Acad. Sci. USA, 107, 6204, 10.1073/pnas.0914423107
Vu, 2012, Convergent evolution of adenosine aptamers spanning bacterial, human, and random sequences revealed by structure-based bioinformatics and genomic SELEX, Chem. Biol., 19, 1247, 10.1016/j.chembiol.2012.08.010
Wachter, 2007, Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs, Plant Cell, 19, 3437, 10.1105/tpc.107.053645
Watson, 2011, The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo, Nat. Struct. Mol. Biol., 18, 359, 10.1038/nsmb.1989
Watson, 2012, The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis, Nat. Chem. Biol., 8, 963, 10.1038/nchembio.1095
Weinberg, 2007, Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline, Nucleic Acids Res., 35, 4809, 10.1093/nar/gkm487
Weinberg, 2010, Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes, Genome Biol., 11, R31, 10.1186/gb-2010-11-3-r31
Wickiser, 2005, The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch, Mol. Cell, 18, 49, 10.1016/j.molcel.2005.02.032
Winkler, 2002, Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression, Nature, 419, 952, 10.1038/nature01145
Winkler, 2003, An mRNA structure that controls gene expression by binding S-adenosylmethionine, Nat. Struct. Biol., 10, 701, 10.1038/nsb967
Winkler, 2004, Control of gene expression by a natural metabolite-responsive ribozyme, Nature, 428, 281, 10.1038/nature02362