A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity

Ming Dao1, Nataliya Sokolovska1,2, Rémi Brazeilles3, Séverine Affeldt1, Véronique Pelloux1,2, Edi Prifti1,4, Julien Chilloux5, Eric O. Verger1, Brandon D. Kayser1, Judith Aron‐Wisnewsky6,1,2, Farid Ichou1, Estelle Pujos‐Guillot7, Lesley Hoyles5,8, Catherine Juste9,10, Joël Doré9,10, Marc‐Emmanuel Dumas5, Salwa W. Rizkalla1, Bridget Holmes3, Jean‐Daniel Zucker1,4, Karine Clément6,1,2
1ICAN - Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Research Unit on Cardiovascular and Metabolic Diseases (Faculté de Médecine - 91 boulevard de l'Hôpital 75634 Paris Cedex 13 - France)
2Nutriomics - Nutrition et obésités: approches systémiques (UMR-S 1269) (France)
3Danone Nutricia Research [Palaiseau, France] (France)
4UMMISCO - Unité de modélisation mathématique et informatique des systèmes complexes [Bondy] (IRD France Nord - 32 avenue Henri Varagnat - 93143 Bondy cedex - France)
5Imperial College London (South Kensington Campus, London SW7 2AZ - United Kingdom)
6CHU Pitié-Salpêtrière [AP-HP] (47-83 Boulevard de l'Hôpital, 75013 Paris - France)
7UNH - Unité de Nutrition Humaine (Site INRAE Theix : 63122 Saint-Gènes-Champanelle // Site Clermont : UFR de Médecine et de Pharmacie, TSA 50400, 28 Place Henri Dunant, 63001 Clermont-Ferrand - France)
8Nottingham Trent University (Nottingham Trent University 50 Shakespeare Street Nottingham NG1 4FQ - United Kingdom)
9AgroParisTech (22 place de l'Agronomie CS 20040 91123 Palaiseau cedex - France)
10MICALIS - MICrobiologie de l'ALImentation au Service de la Santé (F-78350 JOUY-EN-JOSAS - France)

Tóm tắt

Từ khóa


Tài liệu tham khảo

Affeldt, 2016, Spectral consensus strategy for accurate reconstruction of large biological networks., BMC Bioinformatics, 17, 10.1186/s12859-016-1308-y

Blaise, 2009, Statistical recoupling prior to significance testing in nuclear magnetic resonance based metabonomics., Anal. Chem., 81, 6242, 10.1021/ac9007754

Bouché, 2002, Five-week, low-glycemic index diet decreases total fat mass and improves plasma lipid profile in moderately overweight nondiabetic men., Diabetes Care, 25, 822, 10.2337/diacare.25.5.822

Capel, 2009, Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization., Diabetes, 58, 1558, 10.2337/db09-0033

Chen, 2011, Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods., PLoS One, 6, 10.1371/journal.pone.0017238

Clément, 2004, Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects., FASEB J., 18, 1657, 10.1096/fj.04-2204com

Cotillard, 2013, Dietary intervention impact on gut microbial gene richness., Nature, 500, 585, 10.1038/nature12480

Dao, 2015, Akkermansia muciniphilaand improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology., Gut, 65, 426, 10.1136/gutjnl-2014-308778

Dao, 2016, Losing weight for a better health: role for the gut microbiota., Clin. Nutr. Exp., 6, 39, 10.1016/j.yclnex.2015.12.001

Després, 2001, Treatment of obesity: need to focus on high risk abdominally obese patients., BMJ, 322, 716, 10.1136/bmj.322.7288.716

Dona, 2014, Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping., Anal. Chem., 86, 9887, 10.1021/ac5025039

Dona, 2016, A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments., Comput. Struct. Biotechnol. J., 14, 135, 10.1016/j.csbj.2016.02.005

Dumas, 2006, Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice., Proc. Natl. Acad. Sci. U.S.A., 103, 12511, 10.1073/pnas.0601056103

Elliott, 2015, Urinary metabolic signatures of human adiposity., Sci. Transl. Med., 7, 10.1126/scitranslmed.aaa5680

Esposito Vinzi, 2010, Handbook of Partial Least Squares-Concepts., 10.1007/978-3-540-32827-8

Fetissov, 2017, Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour., Nat. Rev. Endocrinol., 13, 11, 10.1038/nrendo.2016.150

Forslund, 2015, Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota., Nature, 528, 262, 10.1038/nature15766

Gagnon-Bartsch, 2012, Using control genes to correct for unwanted variation in microarray data., Biostatistics, 13, 539, 10.1093/biostatistics/kxr034

Gao, 2009, Metabolite analysis of human fecal water by gas chromatography/mass spectrometry with ethyl chloroformate derivatization., Anal. Biochem., 393, 163, 10.1016/j.ab.2009.06.036

Genser, 2018, Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes., J. Pathol., 246, 217, 10.1002/path.5134

Geurts, 2014, Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics., Benef. Microbes, 5, 3, 10.3920/BM2012.0065

Hastie, 2009, The Elements of Statistical Learning - Data Mining, Inference., 10.1007/978-0-387-84858-7

Herman, 2010, Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels., J. Biol. Chem., 285, 11348, 10.1074/jbc.M109.075184

Herrgård, 2008, A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology., Nat. Biotechnol., 26, 1155, 10.1038/nbt1492

Karlsson, 2013, Gut metagenome in European women with normal, impaired and diabetic glucose control., Nature, 498, 99, 10.1038/nature12198

Khan, 2014, Microbial modulation of insulin sensitivity., Cell Metab., 20, 753, 10.1016/j.cmet.2014.07.006

Kidd, 2014, Unifying immunology with informatics and multiscale biology., Nat. Immunol., 15, 118, 10.1038/ni.2787

Kong, 2014, Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects., PLoS One, 9, 10.1371/journal.pone.0109434

Kong, 2013, Insulin resistance and inflammation predict kinetic body weight changes in response to dietary weight loss and maintenance in overweight and obese subjects by using a Bayesian network approach., Am. J. Clin. Nutr., 98, 1385, 10.3945/ajcn.113.058099

Kussmann, 2013, Perspective: a systems approach to diabetes research., Front. Genet., 4, 10.3389/fgene.2013.00205

Laferrère, 2011, Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss., Sci. Transl. Med., 3, 10.1126/scitranslmed.3002043

Le Chatelier, 2013, Richness of human gut microbiome correlates with metabolic markers., Nature, 500, 541, 10.1038/nature12506

Leek, 2010, Tackling the widespread and critical impact of batch effects in high-throughput data., Nat. Rev. Genet., 11, 733, 10.1038/nrg2825

Lemaire, 2011, Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis., PLoS One, 6, 10.1371/journal.pone.0018517

Levy, 1998, Correct homeostasis model assessment (HOMA) evaluation uses the computer program., Diabetes Care, 21, 2191, 10.2337/diacare.21.12.2191

Mozaffarian, 2016, Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review., Circulation, 133, 187, 10.1161/CIRCULATIONAHA.115.018585

Munukka, 2014, Gut-adipose tissue axis in hepatic fat accumulation in humans., J. Hepatol., 61, 132, 10.1016/j.jhep.2014.02.020

Muoio, 2012, Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility., Cell Metab., 15, 764, 10.1016/j.cmet.2012.04.005

Mutch, 2006, Unraveling the genetics of human obesity., PLoS Genet, 2, 10.1371/journal.pgen.0020188

Newgard, 2009, A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance., Cell Metab., 9, 311, 10.1016/j.cmet.2009.02.002

Pallister, 2017, Hippurate as a metabolomic marker of gut microbiome diversity: modulation by diet and relationship to metabolic syndrome., Sci. Rep., 7, 10.1038/s41598-017-13722-4

Parker, 2014, Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch correction., Bioinforma. Oxf. Engl., 30, 2757, 10.1093/bioinformatics/btu375

Pedersen, 2016, Human gut microbes impact host serum metabolome and insulin sensitivity., Nature, 535, 376, 10.1038/nature18646

Piening, 2018, Integrative personal omics profiles during periods of weight gain and loss., Cell Syst., 6, e8, 10.1016/j.cels.2017.12.013

Plovier, 2017, A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice., Nat. Med., 23, 107, 10.1038/nm.4236

Prifti, 2008, FunNet: an integrative tool for exploring transcriptional interactions., Bioinforma. Oxf. Engl., 24, 2636, 10.1093/bioinformatics/btn492

Qin, 2012, A metagenome-wide association study of gut microbiota in type 2 diabetes., Nature, 490, 55, 10.1038/nature11450

Rizkalla, 2012, Differential effects of macronutrient content in 2 energy-restricted diets on cardiovascular risk factors and adipose tissue cell size in moderately obese individuals: a randomized controlled trial., Am. J. Clin. Nutr., 95, 49, 10.3945/ajcn.111.017277

Roberts, 2014, Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome., Lancet Diabetes Endocrinol., 2, 65, 10.1016/S2213-8587(13)70143-8

Ruggenenti, 2009, Ameliorating hypertension and insulin resistance in subjects at increased cardiovascular risk: effects of acetyl-L-carnitine therapy., Hypertens, 54, 567, 10.1161/HYPERTENSIONAHA.109.132522

Schooneman, 2016, Assessment of plasma acylcarnitines before and after weight loss in obese subjects., Arch. Biochem. Biophys., 606, 73, 10.1016/j.abb.2016.07.013

Schooneman, 2013, Acylcarnitines: reflecting or inflicting insulin resistance?, Diabetes, 62, 1, 10.2337/db12-0466

Shannon, 2003, Cytoscape: a software environment for integrated models of biomolecular interaction networks., Genome Res., 13, 2498, 10.1101/gr.1239303

Smith, 2006, XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification., Anal. Chem., 78, 779, 10.1021/ac051437y

Sokol, 2008, Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients., Proc. Natl. Acad. Sci. U.S.A., 105, 16731, 10.1073/pnas.0804812105

Speakman, 2011, Caloric restriction., Mol. Aspects Med., 32, 159, 10.1016/j.mam.2011.07.001

Sumner, 2007, Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI)., Metabolomics, 3, 211, 10.1007/s11306-007-0082-2

Tremaroli, 2012, Functional interactions between the gut microbiota and host metabolism., Nature, 489, 242, 10.1038/nature11552

Viguerie, 2005, Transcriptomics applied to obesity and caloric restriction., Biochimie, 87, 117, 10.1016/j.biochi.2004.12.011

Wang, 2018, The gut-microglia connection: implications for central nervous system diseases., Front. Immunol., 9, 10.3389/fimmu.2018.02325

Wu, 2015, Linking microbiota to human diseases: a systems biology perspective., Trends Endocrinol. Metab., 26, 758, 10.1016/j.tem.2015.09.011

Xi, 2013, DDRGK1 regulates NF-κB activity by modulating IκBα stability., PLoS One, 8, 10.1371/journal.pone.0064231