Một Phương Pháp Heuristic Dựa Trên Phân Tách Dantzig-Wolfe Cho Vấn Đề Thiết Kế Mạng Động Bậc Hai

Networks and Spatial Economics - Tập 11 - Trang 101-126 - 2008
Dung-Ying Lin1, Ampol Karoonsoontawong2, S. Travis Waller1
1Department of Civil, Architectural & Environmental Engineering, University of Texas at Austin, Austin, USA
2School of Transportation Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang, Nakhonratchasima 30000, Thailand

Tóm tắt

Chúng tôi trình bày một phương pháp heuristic để giải quyết vấn đề thiết kế mạng bậc hai NP-khó (NDP). Phương pháp heuristic được phát triển dựa trên nguyên tắc phân tách Dantzig-Wolfe, để giải quyết một cách lặp đi lặp lại một vấn đề chính và một vấn đề phân giá. Vấn đề chính là chương trình tuyến tính phân bổ ngân sách được giải quyết bởi CPLEX để xác định phân bổ ngân sách và xây dựng một mạng truyền thông tế bào đã được sửa đổi cho vấn đề phân giá. Vấn đề phân giá là sự phân bổ giao thông động tối ưu cho người dùng (UODTA) được giải quyết bởi một thuật toán tổ hợp hiện có. Để tạo điều kiện cho nguyên tắc phân tách, chúng tôi đề xuất một thuật toán kết nối lùi và các quy trình slackness bổ sung để ước lượng hiệu quả các biến đối ngẫu cần thiết từ giải pháp UODTA. Các biến đối ngẫu sau đó được sử dụng để bổ sung một cột mới vào chương trình chính trong mỗi vòng lặp. Quá trình lặp lại cho đến khi tiêu chí dừng được đáp ứng. Các thí nghiệm số được thực hiện trên hai mạng thử nghiệm. Các kết quả khích lệ cho thấy tính khả thi của phương pháp heuristic trong việc giải quyết NDP quy mô lớn. Mặc dù chỉ xem xét một vấn đề đích đơn trong bài báo này, phương pháp được đề xuất có thể được mở rộng để giải quyết các vấn đề đa điểm đến.

Từ khóa

#bậc hai #thiết kế mạng #phân tách Dantzig-Wolfe #phân bổ ngân sách #phân giá động #giao thông tối ưu cho người dùng #thuật toán tổ hợp

Tài liệu tham khảo

Abdulaal M, LeBlanc LJ (1979) Continuous equilibrium network design models. Transp Res B 13:19–32 Ahuja RK, Magnanti TL Orlin JB (1993) Network flows: theory, algorithms and applications. Prentice Hall, New Jersey Bard JF (1983) An efficient point algorithm for a linear two-stage optimization problem. Operations Research 31(4):670–684 Bard JF (1998) Practical Bilevel Optimization Algorithms and Applications, Kluwer Academic Publishers Boyce DE (1984) Urban transportation network equilibrium and design models: recent achievements and future prospectives. Environ Plann A 16:1445–1474 Cantarella GE, Pavone G, Vitetta A (2006) Heuristics for urban road network design: lane layout and signal settings. Eur J Oper Res 175(3):1682–1695 Chen M, Alfa AS (1991) A network design algorithm using a stochastic incremental traffic assignment approach. Transp Sci 25(3):215–224 Colson B, Marcotte P, Savard G (2007) An overview of bilevel optimization. Ann Oper Res 153:235–256 Daganzo CF (1994) The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp Res Part B 28B(4):269–287 Daganzo CF (1995) The cell transmission model, part II: network traffic. Transp Res Part B 29B(2):79–93 Dantzig GB (1963) Linear Programming and Extensions. Princeton University Press Dantzig GB, Harvey RP, Landsowne ZF, Robinson DW, Maier SF (1979) Formulating and solving the network design problem by decomposition. Transp Res B 13:5–17 Davis GA (1994) Exact local solution of the continuous network design problem via stochastic user equilibrium assignment. Transp Res B 28:61–75 Friesz TL (1985) Transportation network equilibrium, design and aggregation: key developments and research opportunities. Transp Res A 19:413–427 Friesz TL, Cho H, Mehta N, Tobin R, Anandalingam G (1992) A simulated annealing approach to the network design problem with variational inequality constraints. Transp Sci 26(1):18–26 Hoang HH (1982) Topological optimization of networks: a non-linear mixed integer model employing generalized benders decomposition. IEEE Trans on Automat Contr 27:164–169 Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J Assoc Comp Mach 8:212–229 Janson BN (1995) Network design effects of dynamic traffic assignment. J Transp Eng 121(1):1–13 Jeon K, Ukkusuri S, Waller ST (2005) Heuristic Approach for Discrete Network Design Problem Accounting for Dynamic Traffic Assignment Conditions: Formulations, Solution Methodologies, Implementations and Computational Experiences. Presented at 84th Annual Meeting of the Transportation Research Board, Washington, D.C. Karoonsoontawong A (2006) Robustness approach to the integrated network design problem, signal optimization and dynamic traffic assignment problem. Ph.D. Dissertation, The University of Texas at Austin, Austin, Texas Karoonsoontawong A, Waller ST (2005) A comparison of system- and user-optimal stochastic dynamic network design models using Monte Carlo bounding techniques. Transp Res Rec: J Transp Res Board No. 1923:91–102 Karoonsoontawong A, Waller ST (2006) Dynamic continuous network design problem: linear bi-level programming and metaheuristic approaches. Transp Res Rec: J Transp Res Board No. 1964:104–117 Karoonsoontawong A, Waller ST (2007) Robust dynamic continuous network design problem. Transp Res Rec: J Transp Res Board No. 2029:58–71 Karoonsoontawong A, Waller ST (2008) Integrated network capacity expansion and traffic signal optimization problem: Robust bi-level dynamic formulation. Networks and spatial economics, doi 10.1007/s11067-008-9071-x LeBlanc LJ (1975) An algorithm for the discrete network design problem. Transp Sci 9:183–199 LeBlanc LJ, Abdulaal M (1979) An efficient dual approach to the urban road network design problem. Comput Math Appl 5:11–19 LeBlanc LJ, Abdulaal M (1984) A comparison of the user-optimum versus system-optimum traffic assignment in transportation network design. Transp Res B 18:115–121 LeBlanc LJ, Boyce D (1986) A Bi-Level programming algorithm for the exact solution of the network design problem with user-optimal traffic flows. Transp Res B 20:259–265 Lighthill MJ, Whitham JB (1955) On kinematic waves ii: a theory of traffic flow on long crowded roads. Proc the R Soc Lond, A Math Phys Sci 229(1178):317–345 Magnanti TL, Wong RT (1984) Network design and transportation planning: models and algorithms. Transp Sci 18(1):1–55 Marcotte P (1983) Network optimization with continuous control parameters. Transp Sci 17:181–197 Marcotte PA (1988) Note on a bilevel programming algorithm by leblanc and boyce. Transportation Research Part B 22:233–237 Meng Q, Yang H, Bell MGH (2001) An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem. Transp Res B 35:83–105 Patriksson M, Rockafellar RT (2002) A mathematical model and descent algorithm for bilevel traffic management. Transp Sci 36(3):271–291 Powell MJ (1964) An efficient method for finding the minimum of a function of several variables without using derivatives. The Computer Journal 9:155–162 Suwansirikul C, Friesz TL, Tobin RL (1987) Equilibrium decomposed optimization: a heuristic for the continuous equilibrium network design problem. Transp Sci 21:254–263 Uchida K, Sumalee A, Watling D, Connors R (2007) A study on network design problems for multi-modal networks by Probit-based stochastic user equilibrium. Netw Spat Econ 7(3):213–240 Ukkusuri S (2002) Linear programs for the user optimal dynamic traffic assignment problem. Master Thesis, University of Illinois at Urbana-Champaign Ukkusuri S, Waller ST (2008) Linear programming models for the user and system optimal dynamic network design problem: formulations, comparisons and extensions. Netw Spat Econ 8(4):383–406 Ukkusuri S, Karoonsoontawong A, Waller ST (2004) A stochastic dynamic user optimal network design model accounting for demand uncertainty. Proceedings of the International Conference of Transportations Systems Planning and Operations (TRANSPO), Madras, India, Feb. 18–20 Vicente LN, Calamai PH (1994) Bilevel and multilevel programming: a bibliography review. J Glob Optim 5:291–306 Von Stackelberg H (1952) The theory of the market economy. Oxford University Press, Oxford Waller ST (2000) Optimization and control of stochastic dynamic transportation systems: formulations, solution methodologies, and computational experience. Ph.D. Dissertation, Northwestern University Waller ST, Ziliaskopoulos AK (2001) Stochastic dynamic network design problem. transportation research record: Journal of the Transportation Research Board, No. 1771, TRB, National Research Council, Washington, D.C., pp.106–113. Waller ST, Ziliaskopoulos, AK (2006) A combinatorial user optimal dynamic traffic assignment algorithm. Ann Oper Res 144(1) Waller ST, Mouskos KC, Kamaryiannis D, Ziliaskopoulos AK (2006) A linear model for continuous network design problem. Comput-Aided Civil Infrastruct Eng 21(5, July):334–345 Yang H, Bell MGH (1998) Models and algorithms for road network design: a review and some new developments. Transp Rev 18(3):257–278 Yin Y, Madanat SM, Lu X-Y (2008) Robust Improvement Schemes for Road Networks under Demand Uncertainty, European Journal of Operational Research, doi:10.1016/j.ejor.2008.09.008 Ziliaskopoulos AK (2000) A linear programming model for the single destination system optimum dynamic traffic assignment problem. Transp Sci 34(1):37–49