A Critical Review of Mg-Based Hydrogen Storage Materials Processed by Equal Channel Angular Pressing
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rusman, 2016, A review on the current progress of metal hydrides material for solid-state hydrogen storage applications, Int. J. Hydrogen Energy, 41, 12108, 10.1016/j.ijhydene.2016.05.244
International Energy Agency (2010). World Energy Outlook, Executive Summary, International Energy Agency.
Skripnyuk, 2009, Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing, Int. J. Hydrogen Energy, 34, 6320, 10.1016/j.ijhydene.2009.05.136
Wu, 2017, A Phase transition and hydrogen storage properties of Mg17Ba2 compound, J. Alloys Compd., 690, 519, 10.1016/j.jallcom.2016.08.159
Sakintuna, 2007, Metal hydride materials for solid hydrogen storage: A review, Int. J. Hydrogen Energy, 32, 1121, 10.1016/j.ijhydene.2006.11.022
Ellinger, 1955, The preparation and some properties of magnesium hydride, J. Am. Chem. Soc., 77, 2647, 10.1021/ja01614a094
Crivello, 2016, Mg-based compounds for hydrogen and energy storage, Appl. Phys. A, 122, 85, 10.1007/s00339-016-9601-1
Kim, 2006, Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears, Scr. Mater., 54, 1391, 10.1016/j.scriptamat.2005.11.066
Mostaed, 2014, Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications, Biomatter, 4, e28283, 10.4161/biom.28283
Zeng, 1999, Critical assessment and thermodynamic modeling of the Mg–H system, Int. J. Hydrogen Energy, 24, 989, 10.1016/S0360-3199(98)00132-3
Skripnyuk, 2004, The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt % Zn–0.71 wt % Zr (ZK60) alloy, Acta Mater., 52, 405, 10.1016/j.actamat.2003.09.025
Segal, 1995, Materials processing by simple shear, Mater. Sci. Eng. A, 197, 157, 10.1016/0921-5093(95)09705-8
Valiev, 2006, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51, 881, 10.1016/j.pmatsci.2006.02.003
Iwahashi, 1996, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scr. Mater., 35, 143, 10.1016/1359-6462(96)00107-8
Huot, 2012, Application of severe plastic deformation techniques to magnesium for enhanced hydrogen sorption properties, Metals, 2, 329, 10.3390/met2030329
Wieczorek, 2006, SPD processed alloys as efficient vacancy-hydrogen systems, Solid State Phenom., 114, 177, 10.4028/www.scientific.net/SSP.114.177
Furukawa, 1998, The shearing characteristics associated with equal-channel angular pressing, Mater. Sci. Eng. A, 257, 328, 10.1016/S0921-5093(98)00750-3
Song, 2011, Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing, Corros. Sci., 53, 362, 10.1016/j.corsci.2010.09.044
Skripnyuk, 2007, The effect of equal channel angular pressing on hydrogen storage properties of a eutectic Mg-Ni alloy, J. Alloys Compd., 436, 99, 10.1016/j.jallcom.2006.07.030
Asselli, 2015, Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy, Int. J. Hydrogen Energy, 40, 16971, 10.1016/j.ijhydene.2015.05.149
Soyama, 2016, Severely deformed ZK60 + 2.5% Mm alloy for hydrogen storage produced by two different processing routes, Int. J. Hydrogen Energy, 41, 11284, 10.1016/j.ijhydene.2016.05.031
Crivello, 2016, Review of magnesium hydride-based materials: Development and optimisation, Appl. Phys. A, 122, 97, 10.1007/s00339-016-9602-0
Broom, D.P. (2013). The absorption and desorption properties of hydrogen storage material. Hydrogen Storage Materials the Characterisation of Their Storage Properties, China Machine Press. [1st ed.]. (In Chinese).
Krystian, 2011, Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by equal channel angular pressing, J. Alloys Compd., 509, 449, 10.1016/j.jallcom.2011.01.029
Hartwig, 1993, The development, testing and optimization of energy storage materials based on the MgH2-Mg system, Int. J. Hydrogen Energy, 18, 575, 10.1016/0360-3199(93)90178-D
Liu, 2007, Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and MnO2, J. Alloys Compd., 443, 121, 10.1016/j.jallcom.2006.09.130
Lei, 2009, Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and NiO, J. Alloys Compd., 470, 470, 10.1016/j.jallcom.2008.03.028
Grill, 2015, Long-term hydrogen storage in Mg and ZK60 after severe plastic deformation, Int. J. Hydrogen Energy, 40, 171, 10.1016/j.ijhydene.2015.05.145
Sato, 2002, Point defect production under high internal stress without dislocations in Ni and Cu, Radiat. Eff. Defects Soilds, 157, 171, 10.1080/10420150211403
Gammer, 2017, Reordering a deformation disordered intermetallic compound by antiphase boundary movement, J. Alloys Compd., 713, 148, 10.1016/j.jallcom.2017.04.045
Wang, 2014, Forced atomic mixing during severe plastic deformation: Chemical interactions and kinetically driven segregation, Acta Mater., 66, 1, 10.1016/j.actamat.2013.11.066
Straumal, 2012, Accelerated diffusion and phase transformations in co–cu alloys driven by the severe plastic deformation, Mater. Trans., 53, 63, 10.2320/matertrans.MD201111
Sha, 2009, Influence of equal-channel angular pressing on precipitation in an Al-Zn-Mg-Cu alloy, Acta Mater., 57, 3123, 10.1016/j.actamat.2009.03.017
Ma, 2009, Improving both strength and ductility of a Mg alloy through a large number of ECAP passes, Mater. Sci. Eng. A, 513, 122, 10.1016/j.msea.2009.01.040
Setman, 2008, The presence and nature of vacancy type defects in nanometals detained by severe plastic deformation, Mater. Sci. Eng. A, 493, 116, 10.1016/j.msea.2007.06.093
Viswanathan, 2006, Challenges and advances in nanocomposite processing techniques, Mater. Sci. Eng. R Rep., 54, 121, 10.1016/j.mser.2006.11.002
Tran, 2006, Analyses of hydrogen sorption kinetics and thermodynamics of magnesium-misch metal alloys, J. Alloys Compd., 407, 240, 10.1016/j.jallcom.2005.07.007
Oelerich, 2001, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials, J. Alloys Compd., 315, 237, 10.1016/S0925-8388(00)01284-6
Coelho, 2014, Casting in the Semi-Solid state of ZK60 magnesium alloy modified with rare earth addition, Adv. Mater. Res., 922, 694, 10.4028/www.scientific.net/AMR.922.694
Aurora, 2009, On the nucleation step in the Mg-MgH2 phase transformation, Scr. Mater., 61, 1064, 10.1016/j.scriptamat.2009.08.030
Montone, 2010, On the barriers limiting the reaction kinetics between catalysed Mg and hydrogen, Scr. Mater., 63, 456, 10.1016/j.scriptamat.2010.05.003
Zaluski, 1997, Nanocrystalline metal hydrides, J. Alloys Compd., 253, 70, 10.1016/S0925-8388(96)02985-4
Hongo, 2015, Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion, Acta Mater., 92, 46, 10.1016/j.actamat.2015.03.036
Kusadome, 2007, Hydrogen storage capability of MgNi2 processed by high pressure torsion, Scr. Mater., 57, 751, 10.1016/j.scriptamat.2007.06.042
Edalati, 2011, High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain, Scr. Mater., 64, 880, 10.1016/j.scriptamat.2011.01.023
Kirchheim, 1987, Segregation and diffusion of hydrogen in grain boundaries of palladium, Scr. Mater., 21, 135
Kirchheim, 1987, Hydrogen as a probe for the average thickness of a grain boundary, Scr. Mater., 21, 1101
Iwaoka, 2016, Hydrogen diffusion in ultrafine-grained palladium: Roles of dislocations and grain boundaries, Acta Mater., 107, 168, 10.1016/j.actamat.2016.01.069
Oda, 2016, Thermodynamic model for grain boundary effects on hydrogen solubility, diffusivity and permeability in poly-crystalline tungsten, Fusion Eng. Des., 112, 102, 10.1016/j.fusengdes.2016.08.001
Hurley, 2016, Role of grain boundaries in the diffusion of hydrogen in nickel base alloy 600: Study coupling thermal desorption mass spectroscopy with numerical simulation, Int. J. Hydrogen Energy, 41, 17145, 10.1016/j.ijhydene.2016.07.038
Wang, 2016, Fast hydrogen diffusion along the Σ7 grain boundary of α-Al2O3: A first-principles study, Int. J. Hydrogen Energy, 41, 22214, 10.1016/j.ijhydene.2016.09.158
Sun, 2015, Dissolution and diffusion of hydrogen in a molybdenum grain boundary: A first-principles investigation, Comput. Mater. Sci., 102, 243, 10.1016/j.commatsci.2015.02.049
Oudriss, 2012, Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Mater., 60, 6814, 10.1016/j.actamat.2012.09.004
Valiev, 2000, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., 45, 103, 10.1016/S0079-6425(99)00007-9
Jorge, 2013, An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing, Int. J. Hydrogen Energy, 38, 8306, 10.1016/j.ijhydene.2013.03.158
Lima, 2014, Hydrogen storage properties of pure Mg after the combined processes of ECAP and cold-rolling, J. Alloys Compd., 586, 405, 10.1016/j.jallcom.2013.03.106
Jacobson, 2002, Hydrogen dynamics in magnesium and graphite, Comput. Mater. Sci., 24, 273, 10.1016/S0927-0256(02)00175-1
Jorge, 2014, Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling, Int. J. Hydrogen Energy, 39, 3810, 10.1016/j.ijhydene.2013.12.154