A Critical Assessment of the Kinetics and Mechanism of Initiation of Radical Polymerization with Commercially Available Dialkyldiazene Initiators
Tài liệu tham khảo
Moad, 2006, Introduction, 1
Nesvadba, 2012, Radical Polymerization in Industry, 4, 1701
Buback, 2012, Kinetics of Polymerizations, 4, 1737
Heuts, 2007, Further Effects of Chain-Length-Dependent Reactivities on Radical Polymerization Kinetics, Aust J Chem, 60, 754, 10.1071/CH07214
Moad, 2006, Termination, 233
Eastmond, 1976, The Kinetics of Free-Radical Polymerization of Vinyl Monomers in Homogeneous Solution, 14A, 1
Buback, 1995, Critically evaluated rate coefficients for free-radical polymerization. 1. Propagation rate coefficient for styrene, Macromol Chem Phys, 196, 3267, 10.1002/macp.1995.021961016
Beuermann, 1997, Critically evaluated rate coefficients for free-radical polymerization 2. Propagation rate coefficients for methyl methacrylate, Macromol Chem Phys, 198, 1545, 10.1002/macp.1997.021980518
Beuermann, 2000, Critically evaluated rate coefficients for free-radical polymerization, 3. Propagation rate coefficients for alkyl methacrylates, Macromol Chem Phys, 201, 1355, 10.1002/1521-3935(20000801)201:12<1355::AID-MACP1355>3.0.CO;2-Q
Beuermann, 2003, Critically evaluated rate coefficients for free-radical polymerization, 4, Macromol Chem Phys, 204, 1338, 10.1002/macp.200390107
Asua, 2004, Critically evaluated rate coefficients for free-radical polymerization, 5 - Propagation rate coefficient for butyl acrylate, Macromol Chem Phys, 205, 2151, 10.1002/macp.200400355
Beuermann, 2007, Critically evaluated rate coefficients for free-radical polymerization. Part 6: Propagation rate coefficient of methacrylic acid in aqueous solution, Pure Appl Chem, 79, 1463, 10.1351/pac200779081463
Beuermann, 2002, Rate coefficients of free-radical polymerization deduced from pulsed laser experiments, Prog Polym Sci, 27, 191, 10.1016/S0079-6700(01)00049-1
Barner-Kowollik, 2014, Critically evaluated rate coefficients in radical polymerization - 7. Secondary-radical propagation rate coefficients for methyl acrylate in the bulk, Polym Chem, 5, 204, 10.1039/C3PY00774J
Barner-Kowollik, 2005, Critically evaluated termination rate coefficients for free-radical polymerization: Experimental methods, Prog Polym Sci, 30, 605, 10.1016/j.progpolymsci.2005.02.001
Taylor, 2010, Termination Rate Coefficients for Radical Homopolymerization of Methyl Methacrylate and Styrene at Low Conversion, Macromol Chem Phys, 211, 563, 10.1002/macp.200900668
Penczek, 2008, Glossary of terms related to kinetics, thermodynamics, and mechanisms of polymerization (IUPAC Recommendations2008), Pure Appl Chem, 80, 2163, 10.1351/pac200880102163
Moad, 2006, Initiation, 49
Moad, 2012, Radical Polymerization, 3, 59
Jenkins, 2010, Terminology for reversible-deactivation radical polymerization previously called ‘controlled’ radical or ‘living’ radical polymerization, Pure Appl Chem, 82, 483, 10.1351/PAC-REP-08-04-03
Moad, 1996, Chain Transfer Activity of ⌉-Unsaturated Methyl Methacrylate Oligomers, Macromolecules, 29, 7717, 10.1021/ma960852c
Moad, 2005, Living Radical Polymerization by the RAFT Process, Aust J Chem, 58, 379, 10.1071/CH05072
Moad, 2006, Living Radical Polymerization by the RAFT Process - A first Update, Aust J Chem, 59, 669, 10.1071/CH06250
Moad, 2008, Radical addition-fragmentation chemistry in polymer synthesis, Polymer, 49, 1079, 10.1016/j.polymer.2007.11.020
Moad, 2009, Living Radical Polymerization by the RAFT Process - A Second Update, Aust J Chem, 62, 1402, 10.1071/CH09311
Moad, 2012, Living Radical Polymerization by the RAFT Process - A Third Update, Aust J Chem, 65, 985, 10.1071/CH12295
Moad, 2015, RAFT Polymerization -Then and Now, ACS Symp Ser, 1187, 211, 10.1021/bk-2015-1187.ch012
Moad, 2017, RAFT Polymerization to form Stimuli-Responsive Polymers, Polym Chem, 8, 177, 10.1039/C6PY01849A
Yamago, 2009, Precision Polymer Synthesis by Degenerative Transfer Controlled/Living Radical Polymerization Using Organotellurium, Organostibine, and Organobismuthine Chain-Transfer Agents, Chem Rev, 109, 5051, 10.1021/cr9001269
Goto, 2003, Mechanism-Based Invention of High-Speed Living Radical Polymerization Using Organotellurium Compounds and Azo-Initiators, J Am Chem Soc, 125, 8720, 10.1021/ja035464m
David, 2006, Use of iodocompounds in radical polymerization, Chem Rev, 106, 3936, 10.1021/cr0509612
Hawker, 1996, Initiating systems for nitroxide-mediated “living” free radical polymerizations: Synthesis and evaluation, Macromolecules, 29, 5245, 10.1021/ma951905d
Chong, 1999, Imidazolidinone nitroxide-mediated polymerization, Macromolecules, 32, 6895, 10.1021/ma9904868
Yoshida, 2010, Effect of azoinitiators on nitroxide-mediated photo-living radical polymerization of methyl methacrylate, Colloid Polym Sci, 288, 341, 10.1007/s00396-009-2163-4
Moad, 2016, History of nitroxide-mediated polymerization, 1
Peng, 2014, Reversible deactivation radical polymerization mediated by cobalt complexes: recent progress and perspectives, Org Biomolecul Chem, 12, 8580, 10.1039/C4OB01427H
Tang, 2008, Kinetic Modeling of Normal ATRP, Normal ATRP with [CuII]0, Reverse ATRP and SR&NI ATRP, Macromol Theory Simul, 17, 359, 10.1002/mats.200800050
Matyjaszewski, 2012, Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives, Macromolecules, 45, 4015, 10.1021/ma3001719
Matyjaszewski, 2014, Macromolecular Engineering by Atom Transfer Radical Polymerization, J Am Chem Soc, 136, 6513, 10.1021/ja408069v
Xia, 1997, Controlled/“Living” Radical Polymerization. Homogeneous Reverse Atom Transfer Radical Polymerization Using AIBN as the Initiator, Macromolecules, 30, 7692, 10.1021/ma9710085
Min, 2005, Preparation of gradient copolymers via ATRP using a simultaneous reverse and normal initiation process. I. Spontaneous gradient, J Polym Sci Part A Polym Chem, 43, 3616, 10.1002/pola.20809
Li, 2004, Preparation of Linear and Star-Shaped Block Copolymers by ATRP Using Simultaneous Reverse and Normal Initiation Process in Bulk and Miniemulsion, Macromolecules, 37, 2434, 10.1021/ma035712z
Li, 2003, Further progress in atom transfer radical polymerizations conducted in a waterborne system, J Polym Sci Part A Polym Chem, 41, 3606, 10.1002/pola.10936
Gromada, 2001, Simultaneous reverse and normal initiation in atom transfer radical polymerization, Macromolecules, 34, 7664, 10.1021/ma010864k
Toloza Porras, 2013, Computer-Aided Optimization of Conditions for Fast and Controlled ICAR ATRP of n-Butyl Acrylate, Macromol Theory Simul, 22, 136, 10.1002/mats.201200074
Konkolewicz, 2012, Tuning Polymer Properties through Competitive Processes, ACS Symp Ser, 1100, 145, 10.1021/bk-2012-1100.ch010
Konkolewicz, 2012, ICAR ATRP with ppm Cu Catalyst in Water, Macromolecules, 45, 4461, 10.1021/ma300887r
D’Hooge, 2012, Kinetic Modeling of ICAR ATRP, Macromol Theory Simul, 21, 52, 10.1002/mats.201100076
Liu, 2012, Copper-mediated initiators for continuous activator regeneration atom transfer radical polymerization of acrylonitrile, J Polym Sci Part A Polym Chem, 50, 4358, 10.1002/pola.26248
Wang, 2012, Preparation of poly(methyl methacrylate) by ATRP using initiators for continuous activator regeneration (ICAR) in ionic liquid/microemulsions, Polymer, 53, 1093, 10.1016/j.polymer.2012.01.042
Wang, 2012, ICAR ATRP of methyl methacrylate catalyzed by FeCl3·6H2O/succinic acid, J Appl Polym Sci, 126, 381, 10.1002/app.36448
Zhu, 2011, Iron-mediated ICAR ATRP of methyl methacrylate, Macromolecules, 44, 3233, 10.1021/ma102958y
Tsarevsky, 2011, Atom transfer radical polymerization of functional monomers employing Cu-based catalysts at low concentration: Polymerization of glycidyl methacrylate, J Polym Sci Part A Polym Chem, 49, 918, 10.1002/pola.24503
Mueller, 2010, Reducing Copper Concentration in Polymers Prepared via Atom Transfer Radical Polymerization, Macromol React Eng, 4, 180, 10.1002/mren.200900067
Plichta, 2009, ICAR ATRP of Styrene and Methyl Methacrylate with Ru(Cp*)Cl(PPh3)2, Macromolecules, 42, 2330, 10.1021/ma900232t
Matyjaszewski, 2006, Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents, Proc Nat Acad Sci, 103, 15309, 10.1073/pnas.0602675103
Jakubowski, 2012, Adapting Atom Transfer Radical Polymerization to Industrial Scale Production: The Ultimate ATRPSM Technology, ACS Symp Ser, 1100, 203, 10.1021/bk-2012-1100.ch013
Engel, 1980, Mechanism of the thermal and photochemical decomposition of azoalkanes, Chem Rev, 80, 99, 10.1021/cr60324a001
Koga, 1997, Radical Reactions of Azo, Hydrazo and Azoxy Compounds, 2, 603
Dixon, 1998, Decomposition Rates of Organic Free Radical Initiators
Denisov, 2003, Azo Compounds, 303
Sheppard, 2014, Azo Compounds, 1, 817
Bevington, 1987, Initiation of polymerization: Azo compounds and peroxides, Makromol Chem Macromol Symp, 10-11, 89, 10.1002/masy.19870100106
Reetz, 2008, Initiation of Vinyl Polymerization by Organic Molecules and Nonmetal Initiators, 27
Moad, 2002, Initiating Free Radical Polymerization, Macromol Symp, 182, 65, 10.1002/1521-3900(200206)182:1<65::AID-MASY65>3.0.CO;2-E
Myers, 2014, Initiators, Free-Radical, 6, 838
Yamada, 2003, General Chemistry of Radical Polymerization, 117
Matyjaszewski, 2007, Radical Polymerization, 1, 161
Lalevée, 2012, Overview of Radical Initiation, 1, 37
Ehlers, 2013, Kinetics and thermodynamics of radical polymerization, 1
Anonymous, 2018
Anonymous, 2018
Anonymous, DuPont. Product Overview. https://www.chemours.com/Vazo/en_US/products/prod_overview.html, https://www.chemours.com/Vazo/en_US/products/grades/grade_selector.html 2018; Accessed September 2018.
Anonymous, 2018
Anonymous, 2018
Anonymous, 2018
Niki, 1969, Solvent Effects in the Oxidation of Hydrocarbons. I. Chain Initiation by Azobisisobutyronitrile. Chain Initiation by Azobisisobutyronitrile, Bull Chem Soc Japan, 42, 3220, 10.1246/bcsj.42.3220
De Schrijver, 1966, Polymerization kinetics in highly viscous media, J Polym Sci Part A1 Polym Chem, 4, 2201, 10.1002/pol.1966.150040914
Pryor, 1970, Viscosity dependence of bond homolysis. Qualitative and semiquantitative test for cage return, J Am Chem Soc, 92, 5403, 10.1021/ja00721a019
Sun, 2004, Theoretical study on thermal decomposition of azoisobutyronitrile in ground state, Sci China Ser B Chem, 47, 373
Sun, 2004, Theoretical study on the thermal decomposition of azoisobutyronitrile, J Mol Struct: THEOCHEM, 679, 89, 10.1016/j.theochem.2004.04.007
Ishihara, 2010, Notable Substituent Effects on the Rate Constant of Thermal Denitrogenation of Cyclic Azoalkanes: Strong Evidence for a Stepwise Denitrogenation Mechanism, Aust J Chem, 63, 1615, 10.1071/CH10281
Abe, 2012, Direct observation of denitrogenation process of 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH) derivatives, using a visible 5-fs pulse laser, Chem Phys Lett, 527, 79, 10.1016/j.cplett.2012.01.024
Neuman, 1990, cis-Diazenes. Viscosity effects, one-bond scission, and cis-trans isomerization, J Org Chem, 55, 2682, 10.1021/jo00296a026
Khuong, 2003, One-Bond, Two-Bond, and Three-Bond Mechanisms in Thermal Deazetizations of 2,3-Diazabicyclo[2.2.2]oct-2-enes, trans-Azomethane, and 2,3-Diazabicyclo[2.2.1]hept-2-ene, J Am Chem Soc, 125, 14867, 10.1021/ja038198l
Talat-Erben, 1955, The Thermal Decomposition of 2,2’-Azo-bis-isobutyronitrile. Part I. Products of the Reaction, J Am Chem Soc, 77, 3710, 10.1021/ja01619a010
Brittain, 1984, Diastereoselectivity in radical pair recombination in lipid bilayer, J Am Chem Soc, 106, 7652, 10.1021/ja00336a073
Talât-Erben, 1958, The extent of the abnormal recombination of cyanisopropyl free radicals from 2,2′-azo-bis-isobutyronitrile, Can J Chem, 36, 1156, 10.1139/v58-169
Talât-Erben, 1959, Disproportionation and recombination of cyanisopropyl radicals: rearrangement of dimethylketenecyanisopropylimine to tetramethylsuccinodinitrile, Can J Chem, 37, 1165, 10.1139/v59-171
Rodriguez, 2005, N-(2-Cyanopropan-2-yl)isobutyramide, Acta Crystal E, 61, o2733, 10.1107/S1600536805023330
Sun, 2010, Cooperative Effect of Solvent in the Neutral Hydration of Ketenimine: An ab Initio Study Using the Hybrid Cluster/Continuum Model, J Phys Chem A, 114, 595, 10.1021/jp907957k
Aerts, 2018, Light-Induced RAFT Single Unit Monomer Insertion in Aqueous Solution– Towards Sequence-Controlled Polymers, Macromol Rapid Commun, 39, 10.1002/marc.201800240
Chung, 1994, Radical-induced decomposition of dimethyl-N-(2-cyano-2-propyl)ketenimine, J Macromol Sci Part A, 31, 329
Barbe, 1983, Aliphatische azoverbindungen, 14. Eine kinetische analyse des thermischen zerfalls aliphatischer azonitrile, Makromol Chem, 184, 1235, 10.1002/macp.1983.021840612
Krstina, 1993, Further studies on the thermal decomposition of AIBN - Implications as to the mechanism of termination in methacrylonitrile polymerization, Eur Polym J, 29, 379, 10.1016/0014-3057(93)90108-R
Pryor, 1969, Studies of Primary Radical Termination in Vinyl Polymerization. The Polymerization of Styrene Initiated by Tritium-Labeled Azobisisobutyronitrile. Measurement of the Transfer Constant of Azobisisobutyronitrile, Macromolecules, 2, 62, 10.1021/ma60007a012
Braks, 1978, Polymerization mechanisms and molecular weight distribution. II. AIBN-initiated polymerization of styrene at 60°C, J Appl Polym Sci, 22, 3111, 10.1002/app.1978.070221107
Moad, 2009, New Features of the Mechanism of RAFT Polymerization, ACS Symp Ser, 1024, 3, 10.1021/bk-2009-1024.ch001
Timberlake, 1986, Azoalkane decompositions as measues of radical subsituent effects, 271
Overberger, 1954, Azo-bis Nitriles. XI. Decomposition of Azo Compounds, Steric Factors. J Am Chem Soc, 76, 6185, 10.1021/ja01652a093
Duismann, 1974, Steric accelerations in thermolysis and solvolysis reactions, Tetrahedron Lett, 15, 4517, 10.1016/S0040-4039(01)92207-5
Rüchardt, 1980, Steric effects in free radical chemistry, Top Curr Chem, 88, 1, 10.1007/BFb0048503
Wolf, 1989, Predicting rates of decomposition of free-radical initiators. Azo compounds, peresters, and hydrocarbons, ACS Symp Ser, 404, 416, 10.1021/bk-1989-0404.ch032
Luedtke, 1987, Carbonyl group stabilization of radicals: Solvent effects on azoalkane decomposition, Tetrahedron Lett, 28, 4255, 10.1016/S0040-4039(00)96478-5
Barton, 1988
Fink, 1983, Determination of in-cage and out-of-cage recombination of initiator radicals in solution polymerization using labeled initiators, J Polym Sci Polym Chem Ed, 21, 1445, 10.1002/pol.1983.170210518
Fischer, 2001, Factors controlling addition of carbon-centered radicals to alkenes - an experimental and theoretical perspective, Angew Chem Int Ed, 40, 1340, 10.1002/1521-3773(20010417)40:8<1340::AID-ANIE1340>3.0.CO;2-#
Moad, 2014, Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization – status of the dilemma, Macromol Chem Phys, 215, 9, 10.1002/macp.201300562
Moad, 2017, Correction to: Mechanism and Kinetics of Dithiobenzoate-Mediated RAFT Polymerization – Status of the Dilemma, Macromol Chem Phys, 218, 1
Buback, 1998, Pressure dependence of propagation rate coefficients in free-radical homopolymerizations of methyl acrylate and dodecyl acrylate, Macromol Chem Physic, 199, 1721, 10.1002/(SICI)1521-3935(19980801)199:8<1721::AID-MACP1721>3.0.CO;2-5
Hutchinson, 1995, The application of pulsed-laser methods for the determination of free-radical polymerization rate coefficients, DECHEMA Monogr, 131, 467
Kamachi, 1998, Propagation and Termination Constants in Free Radical Polymerization
Adams, 1990, High-conversion emulsion, dispersion and suspension polymerization, Makromol Chem Macromol Symp, 35-36, 1, 10.1002/masy.19900350103
Cunningham, 1999, Microsuspension Polymerization of Methyl Methacrylate, Polym React Eng, 7, 231, 10.1080/10543414.1999.10744509
Stickler, 1987, Experimental techniques in free radical polymerization kinetics, Makromol Chem Macromol Symp, 10-11, 17, 10.1002/masy.19870100104
van Hook, 1958, The Thermal Decomposition of 2,2’-Azo-bis-isobutyronitrile, J Am Chem Soc, 80, 779, 10.1021/ja01537a006
Rafikov, 1967, Features of azobisisobutyronitrile decomposition in media with high micro and macro viscosity, J Polym Sci Part B Polym Lett, 5, 715, 10.1002/pol.1967.110050819
Kulkarni, 1979, Falsification of the kinetics of azobisisobutyronitrile decomposition, J Polym Sci Polymer Lett Ed, 17, 713, 10.1002/pol.1979.130171106
Kulkarni, 1982, External diffusion limitations in initiator decomposition in heterogeneous media, Polymer, 23, 740, 10.1016/0032-3861(82)90061-1
Bessière, 1994, Determination des parametres cinetiques et thermodynamiques des amorceurs de polymerisation radicalaire de type azoique par enthalpimetrie differentielle en mode isotherme, Eur Polym J, 30, 813, 10.1016/0014-3057(94)90009-4
Bessière, 1993, Determination of kinetic parameters for isothermal decomposition of azo initiators of polymerization by differential scanning calorimetry, Polym Bull, 30, 545, 10.1007/BF00296473
Barrett, 1967, Determination of rates of thermal decomposition of polymerization initiators with a differential scanning calorimeter, J Appl Polym Sci, 11, 1617, 10.1002/app.1967.070110901
Neag, 1987, Statistical evaluation of non-isothermal decomposition kinetics analysis methods for AIBN, J Thermal Analysis, 32, 1833, 10.1007/BF01913975
Korbar, 1995, Influence of different initiators on methyl methacrylate polymerization, studied by differential scanning calorimetry, J Thermal Analysis, 44, 1357, 10.1007/BF02549224
Ajzenberg, 2001, Kinetic study by differential scanning calorimetry of the bulk copolymerization of 2-hydroxyethylmethacrylate with ethyleneglycoldimethacrylate, J Appl Polym Sci, 80, 1220, 10.1002/app.1207
Talat-Erben, 1955, The Thermal Decomposition of 2,2’-Azo-bis-isobutyronitrile. Part II. Kinetics of the Reaction, J Am Chem Soc, 77, 3712, 10.1021/ja01619a011
Smith, 1962, Kinetics of thermal decomposition of dimethyl-N-(2-cyano-2-propyl)ketenimine by nuclear magnetic resonance spectroscopy, J Polym Sci, 57, 823, 10.1002/pol.1962.1205716565
Tabka, 2000, Effect of stannous octoate on the thermal decomposition of 2,2′-azobis(isobutyronitrile), Polym Int, 49, 412, 10.1002/(SICI)1097-0126(200004)49:4<412::AID-PI395>3.0.CO;2-J
Cheikhalard, 1998, Thermal decomposition of some azo initiators. Influence of chemical structure, Angew Makromol Chem, 256, 49, 10.1002/(SICI)1522-9505(19980401)256:1<49::AID-APMC49>3.0.CO;2-Q
Kitayama, 1991, End-group analysis of polymacromonomer formed in the radical polymerization of styrene-type PMMA macromonomers by using 2H NMR spectroscopy, Polym Bull, 25, 205, 10.1007/BF00310793
Houshyar, 2012, The scope for synthesis of macro-RAFT agents by sequential insertion of single monomer units, Polym Chem, 3, 1879, 10.1039/c2py00529h
Moad, 1984, Application of carbon-13-labeled initiators and carbon-13 NMR to the study of the kinetics and efficiency of initiation of styrene polymerization, Makromol Chem Rapid Commun, 5, 793, 10.1002/marc.1984.030051203
Moad, 1994, Applications of Labelling and Multidimensional NMR in the Characterization of Synthetic Polymers, Ann Rep NMR Spectr, 29, 287, 10.1016/S0066-4103(08)60134-9
Buback, 1994, Initiator efficiencies in 2,2′-azoisobutyronitrile-initiated free-radical polymerizations of styrene, Macromol Chem Phys, 195, 2117, 10.1002/macp.1994.021950620
Charton, 2004, Initiator efficiency of 2,2′-azobis(isobutyronitrile) in bulk dodecyl acrylate free-radical polymerizations over a wide conversion and molecular weight range, J Polym Sci Part A Polym Chem, 42, 5170, 10.1002/pola.20322
Voll, 2012, A qualitative and quantitative post-mortem analysis: Studying free-radical initiation processes via soft ionization mass spectrometry, J Polym Sci Part A Polym Chem, 50, 2739, 10.1002/pola.26076
Buback, 2009, Determining initiator efficiency in radical polymerization by electrospray-ionization mass spectrometry, Macromol Chem Phys, 210, 1591, 10.1002/macp.200900237
Pramanick, 1981, Application of dye-partition technique to the determination of the rates of initiation in radical polymerization, Colloid Polym Sci, 259, 995, 10.1007/BF01558613
Kanjilal, 1977, Reduction of nitrile end groups in styrene polymers and their subsequent determination by dye partition technique, Makromol Chem, 178, 1707, 10.1002/macp.1977.021780612
Ayrey, 1963, Uses of isotopes in addition polymerization, Chem Rev, 63, 645, 10.1021/cr60226a005
Bevington, 1967, Uses of isotopic methods in polymer chemistry, Chem Ind, 1821
Bevington, 1955, The sensitized polymerization of styrene. The rate and efficiency of initiation, Trans Faraday Soc, 51, 1392, 10.1039/tf9555101392
Bonta, 1976, Radiochemical study of the radical copolymerization of styrene and methyl methacrylate, Polymer, 17, 217, 10.1016/0032-3861(76)90103-8
Arnett, 1952, Vinyl polymerization with radioactive aliphatic azobisnitrile initiators, J Am Chem Soc, 74, 2031, 10.1021/ja01128a049
Barton, 1963, A tracer study of 1-azocyclohexane carbonitrile as an initiator of radical polymerizations, Makromol Chem, 67, 195, 10.1002/macp.1963.020670120
Bevington, 1963, Studies of 2-cyano-2-propylazoformamide II—Measurements of rate of dissociation, Polymer, 4, 129, 10.1016/0032-3861(63)90015-6
Ayrey, 1973, Formation of methacrylonitrile during cage decomposition of azoisobutyronitrile, Eur Polym J, 9, 1347, 10.1016/0014-3057(73)90105-5
Bevington, 1956, The mechanisms of inhibition and retardation in radical polymerizations. Part III. The use of a stable free radical as an inhibitor, J Chem Soc, 3506, 10.1039/jr9560003506
Czerwinski, 1991, Solvent effects on free-radical polymerization, 1. Solvent effect on initiation of methyl methacrylate and N-vinyl-2-pyrrolidone, Makromol Chem, 192, 1285, 10.1002/macp.1991.021920606
Czajlik, 1980, Kinetics of Copolymerization. III. Determination of the Rate of Initiation in the Copolymerization System Acrylonitrile/Methyl Acrylate/Dimethylformamide, J Macromol Sci Part A, 14, 1243, 10.1080/00222338008056743
Hammond, 1955, The Efficiency of Radical Production from Azo-bis-isobutyronitrile, J Am Chem Soc, 77, 3244, 10.1021/ja01617a028
Bevington, 1956, The reaction between diphenylpicrylhydrazyl and 2-cyano-2-propyl radicals, J Chem Soc, 1127, 10.1039/jr9560001127
Bevington, 1958, The mechanisms of inhibition and retardation in radical polymerizations. Part IV. The effects of diphenylpicrylhydrazine and a condensation product of acetone with phenylhydroxylamine upon the sensitized polymerization of styrene, J Chem Soc, 2254, 10.1039/jr9580002254
Hawthorn, 1972, DPPH (2,2-Diphenyl-1-picrylhydrazyl) as a Diagnostic Tool in Mechanistic Studies Related to Polymerization, J Macromol Sci Part A, 6, 661, 10.1080/10601327208056867
Bevington, 2002, A re-examination of some stabilized radicals as inhibitors of polymerization, J Polym Mater, 19, 113
Malysheva, 1982, Application of some inhibitors to the study of radical initiation, Polym Sci USSR, 24, 1749, 10.1016/0032-3950(82)90461-0
Wu, 1960, The Mechanism of Decomposition of Azo Compounds. I. 1,1'-Azocyanocyclohexane and N-(1-Cyanocyclohexyl)-pentamethyleneketenimine, J Am Chem Soc, 82, 5386, 10.1021/ja01505a025
Korolev, 2007, Free-radical vinyl polymerization in bulk: Conversion dependence of initiation efficiency, Polym Sci Ser A, 49, 617, 10.1134/S0965545X07060016
Bevington, 2002, Stabilized radicals as inhibitors of polymerization—reactions of alkoxyamines with growing polymer radicals, J Macromol Sci Part A, 39, 1295, 10.1081/MA-120015731
Fukuda, 1985, Free-radical copolymerization. 3. Determination of rate constants of propagation and termination for styrene/methyl methacrylate system. A critical test of terminal-model kinetics, Macromolecules, 18, 17, 10.1021/ma00143a003
Sato, 2003, Detailed studies of the initiation step in free radical polymerization of α-(substituted methyl)acrylates by electron paramagnetic resonance spectroscopy, Polymer, 44, 2883, 10.1016/S0032-3861(03)00183-6
Bevington, 2005, Further study of a nitroxide as an inhibitor of radical polymerization, J Polym Mater, 22, 445
Yamamoto, 1994, Initiation Step of Radical Polymerization of Styrene in Various Non-Aromatic Solvents, Polym J, 26, 587, 10.1295/polymj.26.587
Zetterlund, 1999, Free Radical Polymerization of Acrylonitrile: Mass Spectrometric Identification of the Nitroxide-Trapped Oligomers Formed in and Estimated Rate Constants for Each of the First Eight Propagation Steps, Macromolecules, 32, 8041, 10.1021/ma9910078
Yoshikawa, 2003, Quantitative Comparison of Theory and Experiment on Living Radical Polymerization Kinetics. 2. Atom Transfer Radical Polymerization, Macromolecules, 36, 908, 10.1021/ma021497v
Yamada, 1984, Radical polymerization behavior of N,N-disubstituted acrylamide: Absolute rate constants for polymerization and copolymerization of N-acryloylpiperidine, J Polym Sci Polym Chem Ed, 22, 463, 10.1002/pol.1984.170220217
Yoshida, 2004, Application of Water-Soluble Radical Initiator, 2,2′-Azobis-[2-(2-imidazolin-2-yl)propane] Dihydrochloride, to a Study of Oxidative Stress, Free Radic Biol Med, 38, 375, 10.1080/1071576042000191763
Vogt, 1969, Die radikalausbeute beim thermischen zerfall von azoisobuttersäuredinitril in gegenwart von sauerstoff und in methylmethacrylat als lösungsmittel, Makromol Chem, 122, 223, 10.1002/macp.1969.021220117
Ivanova, 2016, Kinetics of the thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride studied by the potentiometric method using metal complexes, Russ Chem Bull, 65, 419, 10.1007/s11172-016-1315-1
Braun, 1978, Bestimmung der geschwindigkeitskonstanten und der effektivitäten beim zerfall von 2,2′-azoisobutyronitril in styrol, N-vinyl-2-pyrrolidon und methylmethacrylat, Makromol Chem, 179, 387, 10.1002/macp.1978.021790213
Watanabe, 1997, New method for determination of free-radical production efficiency of organic peroxides and azo compounds, Polym J, 29, 733, 10.1295/polymj.29.733
Fernández-Garcia, 1998, Solvent effects on the free-radical polymerization of methyl methacrylate, Polymer, 39, 991, 10.1016/S0032-3861(97)00406-0
Moad, 1995, Alkoxyamine-Initiated Living Radical Polymerisation - Factors Affecting Alkoxyamine Homolysis Rates, Macromolecules, 28, 8722, 10.1021/ma00130a003
Bednarek, 1988, End groups of poly(methyl methacrylate-co-styrene) prepared with tert-butoxy, methyl, and/or phenyl radical initiation: effects of solvent, monomer composition, and conversion, Macromolecules, 21, 1522, 10.1021/ma00183a050
Moad, 1998, Controlled growth free radical polymerization of methacrylate esters-reversible chain transfer vs. reversible termination, ACS Symp Ser, 685, 332, 10.1021/bk-1998-0685.ch021
Bawn, 1960, Molecular dissociation processes in solution. Part 5.-The decomposition of azo-bis-isobutyronitrile in the presence of αα-diphenyl-β-picryl hydrazyl, Trans Faraday Soc, 56, 815, 10.1039/TF9605600815
Yassin, 1976, The interaction between polymerization initiators and inhibitors in solutions—VIII. The mechanism of the reaction of azobisisobutyronitrile with p-benzoquinone and chloranil in polar and nonpolar solvents, Eur Polym J, 12, 393, 10.1016/0014-3057(76)90108-7
Bamford, 1957, Studies in polymerization. XI. Reactions between polymer radicals and ferric chloride in non-aqueous media, Proc Roy Soc Lond Ser A, 239, 214, 10.1098/rspa.1957.0034
Bamford, 1962, Initiation of vinyl polymerization and the interaction of radicals with ferric chloride, Trans Faraday Soc, 58, 1212, 10.1039/tf9625801212
Chernobai, 1972, Structure and the initiation efficiency of vinyl monomers in radical polymerization, Polym Sci USSR, 14, 1894
Bengough, 1971, Effects of salts of metals on vinyl polymerization. Part 6.-Polymerization of methyl methacrylate in the presence of cupric bromide, Trans Faraday Soc, 67, 414, 10.1039/TF9716700414
Alghamdi, 2013, Investigations into the mass spectrometric method for the determination of the mode of termination in radical polymerization, Macromol Chem Phys, 214, 1384, 10.1002/macp.201200734
Baysal, 1952, Rates of initiation in vinyl polymerization, J Polym Sci, 8, 529, 10.1002/pol.1952.120080511
Tobolsky, 1958, Dead-end Radical Polymerization, J Am Chem Soc, 80, 5927, 10.1021/ja01555a009
Heitz, 1983, Synthesis of Block Sequences by Radical Polymerization, ACS Symp Ser, 212, 337, 10.1021/bk-1983-0212.ch025
Çatalgil, 1987, Determination of kinetic parameters of ethyl methacrylate polymerization by using the dead-end procedure, Makromol Chem, 188, 495, 10.1002/macp.1987.021880304
Johnston-Hall, 2009, RAFT-Mediated Polymerization of Styrene in Readily Biodegradable Ionic Liquids, Macromolecules, 42, 1604, 10.1021/ma802795j
Ng, 1982, Determination of rate constants of benzoyl peroxide and azobisisobutyronitrile dissociation via polymerization kinetics, J Polym Sci Polym Chem Ed, 20, 409, 10.1002/pol.1982.170200215
Semsarzadeh, 2008, Kinetic study of the free-radical polymerization of vinyl acetate in the presence of deuterated chloroform by 1H-NMR spectroscopy, J Appl Polym Sci, 110, 1784, 10.1002/app.28536
Schmidt, 1981, Polarographische Bestimmung der Zerfallsgeschwindigkeit von 2,2′-Azo-di(isobutyronitril) in Acrylnitril-Polymerisationslösungen, Acta Polym, 32, 10.1002/actp.1981.010320411
Blackley, 1979, Kinetics of thermal decomposition of 4,4’-azobis-(4-cyanopentanoic acid) and its salts in aqueous solution, J Chem Soc Faraday Trans, 75, 935, 10.1039/f19797500935
Palma, 1970, Kinetic study on the decomposition of an azonitrile in the temperature range 30-60.deg, Chim Ind (Milan), 52, 1116
Kita, 1998, Practical Radical Additions under Mild Conditions Using 2,2‘-Azobis(2,4-dimethyl-4-methoxyvaleronitrile) [V-70] as an Initiator, Org Proc Res Devel, 2, 250, 10.1021/op970059z
Lim, 1968, On kinetics of decomposition of azo compounds. 1. Decomposition of azo-bis-nitriles and esters of azo-bis-isobutyric acid, Collect Czechoslov Chem Commun, 33, 1122, 10.1135/cccc19681122
Noguchi, 1998, 2,2′-Azobis (4-Methoxy-2,4-Dimethylvaleronitrile), a New Lipid-Soluble Azo Initiator: Application to Oxidations of Lipids and Low-Density Lipoprotein in Solution and in Aqueous Dispersions, Free Radic Biol Med, 24, 259, 10.1016/S0891-5849(97)00230-X
El harfi, 2012, Dielectric properties of free radical initiators—Investigation of thermal decomposition products, Ind Eng Chem Res, 51, 15811, 10.1021/ie302076v
Wayland, 1994, Thermodynamic and Activation Parameters for a (Porphyrinato)cobalt-Alkyl Bond Homolysis, Inorg Chem, 33, 3830, 10.1021/ic00095a029
Woska, 1996, Determination of Organo−Cobalt Bond Dissociation Energetics and Thermodynamic Properties of Organic Radicals through Equilibrium Studies, J Am Chem Soc, 118, 9102, 10.1021/ja960002c
Overberger, 1949, The Preparation of Some Aliphatic Azo Nitriles and their Decomposition in Solution, J Am Chem Soc, 71, 2661, 10.1021/ja01176a018
Panke, 1983, Zur polymerisation von methylmethacrylat bis zu hohen umsätzen: Experimentelle untersuchungen zur theorie des trommsdorff-effektes nach cardenas und o’driscoll, Makromol Chem, 184, 175, 10.1002/macp.1983.021840118
Arnett, 1952, Kinetics of the polymerization of methyl methacrylate with aliphatic azobisnitriles as initiators, J Am Chem Soc, 74, 2027, 10.1021/ja01128a048
Overberger, 1951, Azo-bis-nitriles. III. The Preparation and Decomposition of Azo-nitriles. Steric Factors, J Am Chem Soc, 73, 2618, 10.1021/ja01150a058
Krainev, 1996, Comparison of 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) and 2,2'-azobis(2,4-dimethylvaleronitrile)(AMVN) as free radical initiators: a spin-trapping study, J Chem Soc Perkin Trans, 2, 747, 10.1039/P29960000747
Stickler, 1984, Polymerization of methyl methacrylate up to high degrees of conversion: Experimental investigation of the diffusion-controlled polymerization, J Polym Sci Polym Chem Ed, 22, 2243, 10.1002/pol.1984.170220924
Russell, 1988, Initiator efficiencies in high-conversion bulk polymerizations, Macromolecules, 21, 2141, 10.1021/ma00185a045
Achilias, 1992, Development of a general mathematical framework for modeling diffusion-controlled free-radical polymerization reactions, Macromolecules, 25, 3739, 10.1021/ma00040a021
Ito, 1972, Radical polymerization of vinyl acetate with primary radical termination, J Polym Sci Part A1 Polym Chem, 10, 1481, 10.1002/pol.1972.150100516
Ito, 1974, Relationship between radical polymerization rate and initiator concentration in various solvents, J Polym Sci Polym Chem Ed, 12, 2581, 10.1002/pol.1974.170121111
Das, 1986, The kinetics of solution copolymerization of vinyl chloroacetate with vinyl acetate in a CSTR, J Appl Polym Sci, 32, 5981, 10.1002/app.1986.070320726
Saha, 1958, The effect of temperature on azonitriles as initiators in the polymerization of styrene, J Chem Soc, 12, 10.1039/jr9580000012
Henrici-Olivé, 1962, Losungsmitteleffekte bei der radikalpolymerisation .1. Beeinflussung der startgeschwindigkeit bei der polymerisation von styrol mit aibn als initiator, Makromol Chem, 58, 188, 10.1002/macp.1962.020580112
Makitra, 2005, Effect of Solvation on the Decomposition Rate of Azodiisobutyronitrile, Russ J Gen Chem, 75, 172, 10.1007/s11176-005-0193-2
Trathnigg, 1990, Eine neue methode zur herstellung von hydroxyterminierten polydienen, Angew Makromol Chem, 174, 69, 10.1002/apmc.1990.051740106
Moroni, 1967, Über den einfluß des lösungsmittels beim thermischen zerfall des azoisobuttersäuredinitrils, Makromol Chem, 105, 43, 10.1002/macp.1967.021050104
Schmid, 1992
Breitenbach, 1952, Polymerisationskinetische versuche mit alpha-azoisobuttersaurenitril und benzoylperoxyd an styrol zur aufklarung der geschwindigkeit von start und ubertragungsreaktion, Monats Chem, 83, 724, 10.1007/BF00897721
van Hook, 1958, The initiator efficiency of 2, 2′-azobisisobutyronitrile in the polymerization of styrene and methyl methacrylate, and dicumyl peroxide as a polymerization initiator, J Polym Sci, 33, 429, 10.1002/pol.1958.1203312640
Berger, 1975, Disproportionierung und kombination als abbruchsmechanismen bei der radikalischen polymerisation von styrol, 2, Analyse der temperaturabhängigkeiten. Makromol Chem, 176, 3575, 10.1002/macp.1975.021761205
Tanaka, 1985, Influence of boron halides on the thermal decomposition of azo compounds, Makromol Chem Rapid Commun, 6, 563, 10.1002/marc.1985.030060809
Braun, 1987, Kinetik der startreaktion der radikalischen homo- und copolymerisation von styrol, N-vinyl-2-pyrrolidon und methylmethacrylat, Makromol Chem, 188, 2371, 10.1002/macp.1987.021881012
Yamamoto, 1971, Rates of Decomposition of Azobisisobutyronitrile in Various Solvents, Nippon Kagaku Zassi, 92, 1169, 10.1246/nikkashi1948.92.1169
Howard, 1964, The inhibited autoxidation of styrene: Part IV. Solvent effects, Can J Chem, 42, 1044, 10.1139/v64-160
Ahr, 2010, Initiators and Reactor Additives for Thermoplastics, Personal communication
Bawn, 1951, A method of determination of the rate of molecular dissociation in solution. Parts I and II.-The rate of dissociation of benzoyl peroxide and 2,2’-azo-bis(isobutyronitrile) in various solvents, Trans Faraday Soc, 47, 1216, 10.1039/TF9514701216
Betts, 1962, Kinetics of decomposition of azo-bis-isobutyronitrile in dimethylformamide in the presence of ferric chloride and styrene, Trans Faraday Soc, 58, 1203, 10.1039/tf9625801203
Szafko, 1995, Solvation effect in thermal decomposition of 2,2′-azoisobutyronitrile on the N,N-dimethylformamide/methyl methacrylate system, J Polym Sci Part A Polym Chem, 33, 1637, 10.1002/pola.1995.080331010
Ergan, 2014, Investigation of the microwave effect: a new approach for the solvent effect on the microwave-assisted decomposition reaction of 2,2′-azobis(isobutyronitrile), Ind Eng Chem Res, 53, 13016, 10.1021/ie5021359
Miao, 2012, Kinetic Studies on the Copolymerization of Acrylonitrile and Itaconic Acid in Dimethylsulfoxide, J Macromol Sci Part A, 49, 869, 10.1080/10601325.2012.714680
Takenaka, 1994, Aspects of high-conversion free-radically initiated polymerizations: 1. Initiator efficiency in the homopolymerization of acrylonitrile and methyl acrylate in dimethylsulfoxide with azobisisobutyronitrile as initiator, Polymer, 35, 3899, 10.1016/0032-3861(94)90273-9
Szafko, 2000, Solvation effect in the thermal decomposition of 2,2’-azoisobutyronitrile in the three-component system, J Polym Sci Part A Polym Chem, 38, 2156, 10.1002/(SICI)1099-0518(20000615)38:12<2156::AID-POLA40>3.0.CO;2-C
Kulkarni, 1980, Solvent and viscosity effects in the decomposition of azobisisobutyronitrile, Chem Eng Sci, 35, 823, 10.1016/0009-2509(80)85066-4
Li, 2001, Effect of Co-solvent and Pressure on the Thermal Decomposition of 2, 2′ Azobis-(isobutyronitrile) in Supercritical CO2, Chin Chem Lett, 12, 713
Li, 2002, Chemical Reaction in Binary Mixtures near the Critical Region: Thermal Decomposition of 2,2'-Azobis(isobutyronitrile) in CO2/Ethanol, Chem Eur J, 8, 5593, 10.1002/1521-3765(20021216)8:24<5593::AID-CHEM5593>3.0.CO;2-B
Guan, 1993, Homogeneous free radical polymerizations in supercritical carbon dioxide: 2. Thermal decomposition of 2,2'-azobis(isobutyronitrile), Macromolecules, 26, 2663, 10.1021/ma00063a003
Yamamoto, 1972, Solvent effects in radical reactions. II. Effects of halogenated compounds on the rate of the radical polymerization of styrene, Nippon Kagaku Kaishi, 8, 1300, 10.1246/nikkashi.1972.1300
Juang, 1992, Thermal decomposition of azobisisobutyronitrile dissolved in xylene in the presence of tin(IV) chloride, J Chem Tech Biotechnol, 55, 379, 10.1002/jctb.280550413
Otsu, 1982, Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters, Makromol Chem Rapid Commun, 3, 127, 10.1002/marc.1982.030030208
Tabka, 2001, The role of tin(II) octoate – azobisisobutyronitrile complex in the formation rate of the respective networks in simultaneous interpenetrating polymer networks, Macromol Symp, 171, 123, 10.1002/1521-3900(200106)171:1<123::AID-MASY123>3.0.CO;2-D
Lachinov, 1977, Effects of ZnCl2 on the rate of thermal decomposition of azobisisobutyronitrile, J Polym Sci Polym Chem Ed, 15, 1777, 10.1002/pol.1977.170150726
Srivastava, 1990, Studies on the radical copolymerization of methylacrylate with styrene using ZnCl2 as an accelerator, Br Polym J, 22, 347, 10.1002/pi.4980220409
Funt, 1975, The thermal decomposition of 2,2′-azobisisobutyronitrile in solutions containing zinc chloride, J Polym Sci Polymer Lett Ed, 13, 451, 10.1002/pol.1975.130130802
Bamford, 1967, Catalysis of the thermal decomposition of azo-bis-isobutyronitrile by silver perchlorate, Polymer, 8, 493, 10.1016/0032-3861(67)90060-2
Horanská, 1972, Radical reactions initiated by chelate complexes of transition metals. X. Catalytic decomposition of α,α′-azobisisobutyronitrile, J Polym Sci Part A1 Polym Chem, 10, 2701, 10.1002/pol.1972.150100916
Yoshino, 1977, Study on the Modes of Thermal Decomposition of Several Azo-Type Initiators, Polym J, 9, 275, 10.1295/polymj.9.275
Lyons, 1993, Effect of Ethyl Aluminium Sesquichloride on Relative Reactivities of Styrene and Methyl Methacrylate towards the 1-Cyano-1-methylethyl and the 1-Methyl-1-(methoxycarbonyl)ethyl Radicals, Eur Polym J, 29, 389, 10.1016/0014-3057(93)90109-S
Krstina, 1992, Effect of Ethyl Aluminium Sesquichloride on the Specificity of the Reactions of 1-Methyl-1-Methoxycarbonylethyl Radical. Implications as to the Mechanism of Alternating Copolymerization, Polym Bull, 27, 425, 10.1007/BF00309700
Hammond, 1959, Isolation and study of the intermediate [dimethyl-N-(2-cyano-2-propyl)ketenimine] formed in the decomposition of α,α’-azoisobutyronitrile, J Am Chem Soc, 81, 4878, 10.1021/ja01527a030
Hammond, 1960, The Mechanism of Decomposition of Azo Compounds. II. Cage Effects in the Decomposition of α,α-Azoisobutyronitrile and Related Compounds, J Am Chem Soc, 82, 5394, 10.1021/ja01505a026
Smith, 1959, The kinetics of the thermal decomposition of 2,2’-azodiisobutyronitrile, J Am Chem Soc, 81, 6174, 10.1021/ja01532a018
Bevington, 1962, Further tracer studies of azoisobutyronitrile as an initiator for radical polymerizations, Trans Faraday Soc, 58, 186, 10.1039/tf9625800186
Brooks, 1977, Viscosity effects in the free-radical polymerization of methyl methacrylate, Proc R Soc London Ser A, 357, 183, 10.1098/rspa.1977.0162
Matsumoto, 1994, Detailed kinetic analysis of the radical polymerization of trans-4-tert-butylcyclohexyl methacrylate in benzene based on the rate constants determined by electron spin resonance spectroscopy, Macromolecules, 27, 5863, 10.1021/ma00098a046
Saha, 1958, Azonitriles as initiators for polymerization of methyl methacrylate, J Chem Soc, 7, 10.1039/jr9580000007
Korolev, 2007, Free-radical copolymerization of binary mixtures of vinyl monomers of various compositions: Initiation rate constants, Polym Sci Ser A, 49, 242, 10.1134/S0965545X07030029
Kulitski, 1963, Determination of rate constants for the decay of initiators and initiation efficiency, Russ Chem Bull, 12, 230, 10.1007/BF00846387
Roy, 1956, Diffusion Kinetics: The Photolysis of Azo-bis-isobutyronitrile1, J Am Chem Soc, 78, 519, 10.1021/ja01584a002
Berger, 1975, Disproportionierung und kombination als abbruchmechanismen bei der radikalischen polymerisation von styrol, 1.Versuche mit 14C-markierten 2,2′-azoisobutyronitril, Makromol Chem, 176, 1983, 10.1002/macp.1975.021760708
Deb, 1974, Primary radical termination in polymerization: Evaluation of the characteristic constant, Eur Polym J, 10, 709, 10.1016/0014-3057(74)90184-0
Bamford, 1959, Termination by primary radicals in vinyl polymerization, Trans Faraday Soc, 55, 1451, 10.1039/tf9595501451
Bamford, 1958, Kinetic effects of salts on vinyl polymerization in non-aqueous systems, J Polym Sci, 29, 355, 10.1002/pol.1958.1202912003
Ayrey, 1974, Chain transfer reaction of azoisobutyronitrile during polymerization of methyl methacrylate at 60°C, Makromol Chem, 175, 1463, 10.1002/macp.1974.021750509
Johnson, 1952, Monoradical and Diradical Polymerization of Styrene1, J Am Chem Soc, 74, 938, 10.1021/ja01124a022
Ma, 1985, Free-radical copolymerization. 4. Rate constants of propagation and termination for p-chlorostyrene/methyl acrylate system, Macromolecules, 18, 26, 10.1021/ma00143a004
Berezsnich-Földes, 1964, Initiated polymerization of vinylacetate—II, Polym Sci USSR, 6, 1697, 10.1016/0032-3950(64)90089-9
Duismann, 1978, Aliphatische azoverbindungen, XII: Einfluß der solvenspolarität auf die zerfallsgeschwindigkeit cyclischer azoverbindungen, Chem Ber, 111, 596, 10.1002/cber.19781110219
Lewis, 1949, Decomposition of Aliphatic Azo Compounds, J Am Chem Soc, 71, 747, 10.1021/ja01170a513
Di Serio, 1995, The radical polymerization of C12–C18 alkylmethacrylates in semibatch conditions, J Appl Polym Sci, 56, 1141, 10.1002/app.1995.070560914
Overberger, 1970, Azo compounds. Investigation of optically active azonitriles, J Org Chem, 35, 1762, 10.1021/jo00831a010
Ganachaud, 1995, Synthesis and characterization of bioreactive-end-group-containing azoinitiators and their use for preparing end-functionalized polyvinylpyrrolidone, J Appl Polym Sci, 58, 1811, 10.1002/app.1995.070581020
Vernekar, 1988, Decomposition rate studies of azobisnitriles containing functional groups, J Polym Sci Part A Polym Chem, 26, 953, 10.1002/pola.1988.080260321
Voron, 1981, Kinetics of the decomposition of 4,4’-azobis-4-cyanovaleric acid, Kinet Cataly, 22, 832
Time, 1974, Thermal decomposition of 4,4’-azobis(4-cyanovaleric acid), Vysokomol Soedin, Ser B, 16, 255
Ishige, 1973, Solution polymerization of acrylamide to high conversion, J Appl Polym Sci, 17, 1479, 10.1002/app.1973.070170515
Baer, 1972, A kinetic study of acrylamide polymerization initiated by 4.4′-azo-bis-4-cyanopentanoic acid in aqueous solution, Makromol Chem, 158, 27, 10.1002/macp.1972.021580104
Cavell, 1967, Temperature dependence of the rate of initiation of polymerization by 4.4′- azo-bis-4-cyanopentanoic acid, Makromol Chem, 108, 304, 10.1002/macp.1967.021080129
Kim, 1984, Polymerization of acrylamide with diffusion-controlled termination, Polymer, 25, 845, 10.1016/0032-3861(84)90016-8
Preusser, 2016, Modeling the Radical Batch Homopolymerization of Acrylamide in Aqueous Solution, Macromol React Eng, 10, 490, 10.1002/mren.201500076
Ohishi, 1998, A novel process for synthesizing polystyrene and polyarylate block copolymers utilizing telechelic polystyrene, J Polym Sci Part A Polym Chem, 36, 2839, 10.1002/(SICI)1099-0518(19981130)36:16<2839::AID-POLA2>3.0.CO;2-I
David, 2001, Synthesis of carboxy-telechelic oligostyrene by dead-end polymerization: Evaluation of primary radical termination by kinetic study and kinetic simulation model, J Polym Sci Part A Polym Chem, 39, 2740, 10.1002/pola.1252
Bamford, 1960, The coupling of polymers. Part 2.-Vinyl polymers and block copolymers, Trans Faraday Soc, 56, 932, 10.1039/TF9605600932
McCoy, 1972, 2,2’-Azobis(2-cyano-n-propanol). A new free radical initiator, Org Prep Proced Int, 4, 1, 10.1080/00304947209356789
Clouet, 1984, Thermal decomposition of 4,4′-azobis(4-cyanopentanol), Polym Bull, 11, 171, 10.1007/BF00258025
Clouet, 1984, Kinetics of the polymerization of methylmethacrylate with 4,4′-azobis (4-cyanopentanol) as initiator, Polym Bull, 11, 337, 10.1007/BF00254270
Reed, 1971, Telechelic diene prepolymers. I. Hydroxyl-terminated polydienes, J Polym Sci Part A1 Polym Chem, 9, 2029, 10.1002/pol.1971.150090719
Yuruk, 1990, The thermal decomposition of 2,2′-azobis-(2-methyl-5-hydroxy-valeronitril) and its phenyl isocyanate derivative, Angew Makromol Chem, 175, 99, 10.1002/apmc.1990.051750108
Kartavykh, 1977, Polymerization of diene hydrocarbons in the presence of azonitrile initiators containing carboxyl and hydroxyl groups, Polym Sci USSR, 19, 1413, 10.1016/0032-3950(77)90271-4
Overberger, 1953, Azo-bis Nitriles. The Decomposition of Azo Compounds Derived from Cycloalkanones, An Accurate Measure of Differences in Ring Strain. J Am Chem Soc, 75, 2078
Ogo, 1981, Effects of pressure on thermolysis and photolysis of 1,1’-azobiscyclohexane-1-carbonitrile, High Temp - High Press, 13, 321
Neuman, 1971, Neutral and positively charged azonitriles. Decomposition rates and efficiencies of radical production, J Org Chem, 36, 4046, 10.1021/jo00825a009
Maillard, 1979, Determinations cinetiques par microcalorimetrie differentielle en programmation de temperature. VI. Thermolyse d’azo-1,1′-(cyano-1 cyclanes) dans differents solvants, Thermochim Acta, 33, 107, 10.1016/0040-6031(79)87034-3
Neuman, 1972, High pressure studies. X. Activation volumes for homolysis of single bonds, J Am Chem Soc, 94, 2730, 10.1021/ja00763a032
Sack, 1988, Free radical polymerization of methyl methacrylate up to the glassy state. Rates of propagation and termination, Macromolecules, 21, 3345, 10.1021/ma00190a001
O’Driscoll, 1989, The rate of copolymerization of styrene and methylmethacrylate—I. Low conversion kinetics, Eur Polym J, 25, 629, 10.1016/0014-3057(89)90021-9
Otsu, 1969, Radical Decomposition of Alkyl α,α’-Azobisiosbutyrates, J Macromol Sci Chem, 3, 187, 10.1080/10601326908053804
Hammond, 1964, Cage effects in thermal and photochemical decomposition of an azo compound, J Am Chem Soc, 86, 1918, 10.1021/ja01064a003
Kouloumbris, 1996
Wagner, 1993, Determination of chemical kinetics by DSC measurements: Part 2. Experimental results, Thermochim Acta, 225, 153, 10.1016/0040-6031(93)80184-C
Ory, 1961, The rate of thermal decomposition of dimethyl 2,2’-azobisisobutyrate, J Phys Chem, 65, 571, 10.1021/j100821a510
Kopeček, 1973, Poly[N-(2-hydroxypropyl)methacrylamide]—I. Radical polymerization and copolymerization, Eur Polym J, 9, 7, 10.1016/0014-3057(73)90063-3
Coupek, 1971, A contribution to the dependence of initiation efficiency of azo-compounds on their structure, Eur Polym J, 7, 181, 10.1016/0014-3057(71)90130-3
Stickler, 1986, Kinetics of radical polymerization of methyl methacrylate initiated with dimethyl 2,2′-azodiisobutyrate, Makromol Chem, 187, 1765, 10.1002/macp.1986.021870720
Winterle, 1980, Free-radical dynamics in organized lipid bilayers, J Am Chem Soc, 102, 6336, 10.1021/ja00540a027
Zetterlund, 2001, High-Conversion Free-Radical Bulk Polymerization of Styrene: Termination Kinetics Studied by Electron Spin Resonance, Fourier Transform Near-Infrared Spectroscopy, and Gel Permeation Chromatography, Macromolecules, 34, 7686, 10.1021/ma010560y
Spurling, 1991, Computer Simulation of the Chemical Properties of Copolymers, Makromol Chem Macromol Symp, 51, 127, 10.1002/masy.19910510111
Ito, 1985, Radical polymerization initiated by primary radicals with similar structure to the end radical on the polymer, Polymer, 26, 1253, 10.1016/0032-3861(85)90262-9
Shen, 1991, Modelling and kinetic study on radical polymerization of methyl methacrylate in bulk, 1. Propagation and termination rate coefficients and initiation efficiency, Makromol Chem, 192, 2669, 10.1002/macp.1991.021921113
Kodaira, 1987, Thermal decomposition and oligomerization of dimethyl 2,2’-azobisisobutyrate, Polym Commun, 28, 86
Trecker, 1968, Reactions of ester free radicals. The 2-carbomethoxy-2-propyl radical, J Org Chem, 33, 3527, 10.1021/jo01273a037
Bizilj, 1985, The Self-reactions of 1-methoxycarbonyl-1-methylethyl and higher ester radicals: Combination vs disproportionation and oligomeric products from secondary reactions, Aust J Chem, 38, 1657, 10.1071/CH9851657
Qin, 2002, Modeling of the bulk free radical polymerization up to high conversion—three stage polymerization model. II. Number-average molecular weight and apparent initiator efficiency, Polymer, 43, 4859, 10.1016/S0032-3861(02)00243-4
Jalili, 2011, Copolymerization of styrene and methyl methacrylate. Part I: Experimental kinetics and mathematical modeling, Polymer, 52, 4362, 10.1016/j.polymer.2011.07.023
Darabi, 2015, Nitroxide-mediated polymerization of 2-(diethylamino)ethyl methacrylate (DEAEMA) in water, Macromolecules, 48, 72, 10.1021/ma502175c
Fujie, 1992, Preparation and thermal decomposition of cyclic azoamidinium salts as water-soluble radical initiators for polymerization over a wide temperature range, J Macromol Sci Part A, 29, 741, 10.1080/10601329208054113
Hanlon, 1997, The pH Dependence of lipid peroxidation using water-soluble azo initiators, Free Radic Biol Med, 23, 712, 10.1016/S0891-5849(97)00024-5
Culbertson, 2000, Unsymmetrical azo initiators increase efficiency of radical generation in aqueous dispersions, Liposomal membranes, and lipoproteins, J Am Chem Soc, 122, 4032, 10.1021/ja9934605
Hammond, 1963, The mechanism of decomposition of azo compounds. III. Cage effects with positively charged geminate radical pairs, J Am Chem Soc, 85, 1501, 10.1021/ja00893a026
Grabovskiy, 2009, 5-hydroxy-6-methyluracil, an efficient scavenger of peroxyl radical in water, Curr Org Chem, 13, 1733, 10.2174/138527209789578081
Werber, 2011, Analysis of 2,2′-azobis (2-amidinopropane) dihydrochloride degradation and hydrolysis in aqueous solutions, J Pharm Sci, 100, 3307, 10.1002/jps.22578
Rojas Wahl, 1998, Mechanistic studies on the decomposition of water soluble azo-radical-initiators, J Chem Soc Perkin Trans, 2, 2009, 10.1039/a801624k
Ito, 1973, Competition between thermal decomposition and hydrolysis of 2,2’-azobis(2-amidinopropane) in aqueous solution, J Polym Sci Polym Chem Ed, 11, 1673, 10.1002/pol.1973.170110715
Dougherty, 1961, Chemistry of 2,2’-azobisisobutyramidine hydrochloride in aqueous solution: a water-soluble azo initiator, J Am Chem Soc, 83, 4849, 10.1021/ja01484a036
van Berkel, 2003, Entry in Emulsion Polymerization: Effects of Initiator and Particle Surface Charge, Macromolecules, 36, 3921, 10.1021/ma025695y
Torii, 1996, Chemical properties of water-soluble, nonionic azo compounds as initiators for emulsion polymerization, J Polym Sci Part A Polym Chem, 34, 1237, 10.1002/(SICI)1099-0518(199605)34:7<1237::AID-POLA10>3.0.CO;2-A
Keddie, 2011, Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization in Aqueous Solution, N,N-Dimethylacrylamide, Macromolecules, 44, 6738, 10.1021/ma200760q
Sudo, 2013, RAFT-approach to well-defined telechelic vinyl polymers with hydroxyl terminals as polymeric diol-type building blocks for polyurethanes, J Polym Sci Part A Polym Chem, 51, 318, 10.1002/pola.26380
Debuigne, 2011, New functional poly(N-vinylpyrrolidone) based (co)polymers via photoinitiated cobalt-mediated radical polymerization, Chem Commun, 47, 12703, 10.1039/c1cc15471k
Dube, 1980, Radical stabilizing effects : A comparison of transition state effects (rates of azoalkane decompositions) with calculated (ab initio) pi spin densities, Tetrahedron, 36, 1753, 10.1016/0040-4020(80)80070-6
Bandlish, 1975, Substituent effects in radical reactions. III. Thermolysis of substituted phenylazomethanes, 3,5-diphenyl-1-pyrazolines, and azopropanes, J Am Chem Soc, 97, 5856, 10.1021/ja00853a034
Prochazka, 1976, Synthesis of branched azoalkanes and kinetics of their thermal decomposition, Collect Czechoslov Chem Commun, 41, 1557, 10.1135/cccc19761557
Duismann, 1976, Aliphatische azoverbindungen, VI. Sterische beschleunigung der azoalkanthermolyse, Justus Liebigs Annalen der Chemie, 1976, 1820, 10.1002/jlac.197619761013
Prochazka, 1968, Azo-compounds. 2. Kinetics of thermal decomposition of 2,2’-azoisobutane 2,2’-dimethyl-2,2’-azopentane and 1,1’-azoadamantane, Collect Czechoslov Chem Commun, 33, 3387, 10.1135/cccc19683387
Martin, 1970, Kinetic studies of reactions leading to cyclopropylcarbinyl radicals. Cyclopropyl-substituted azomethanes and hexacyclopropylethane, J Am Chem Soc, 92, 978, 10.1021/ja00707a039
Blackham, 1962, Thermal decomposition of 1,1’-azobutane, 1,1’-azoisobutane, 2,2’-azobutane and 2,2’-azoisobutane, J Am Chem Soc, 84, 2922, 10.1021/ja00874a016
Levy, 1960, The Thermal Decomposition of 2,2’-Azoisobutane1, J Am Chem Soc, 82, 5314, 10.1021/ja01505a012
Costello, 1996, Kinetic study of the reactions of tert-butyl radicals in the liquid phase in the presence and absence of oxygen, J Chem Soc Faraday Trans, 92, 3497, 10.1039/ft9969203497
Hurtgen, 2011, Insight into Organometallic-Mediated Radical Polymerization, Polym Rev, 51, 188, 10.1080/15583724.2011.566401
Poli, 2012, Organometallic-Mediated Radical Polymerization, 351
Nicolas, 2013, Nitroxide-mediated polymerization, Prog Polym Sci, 38, 63, 10.1016/j.progpolymsci.2012.06.002
Sciannamea, 2008, In-Situ Nitroxide-Mediated Radical Polymerization (NMP) Processes: Their Understanding and Optimization, Chem Rev, 108, 1104, 10.1021/cr0680540
Georges, 1993, Narrow molecular weight resins by a free-radical polymerization process, Macromolecules, 26, 2987, 10.1021/ma00063a054
Greszta, 1997, TEMPO-mediated polymerization of styrene: rate enhancement with dicumyl peroxide, J Polym Sci Part A Polym Chem, 35, 1857, 10.1002/(SICI)1099-0518(19970715)35:9<1857::AID-POLA27>3.0.CO;2-3
Goto, 1997, Effects of Radical Initiator on Polymerization Rate and Polydispersity in Nitroxide-Controlled Free Radical Polymerization, Macromolecules, 30, 4272, 10.1021/ma9702152
Souaille, 2002, Rate Enhancement and Retardation Strategies in Living Free Radical Polymerizations Mediated by Nitroxides and Other Persistent Species: A Theoretical Assessment, Macromolecules, 35, 248, 10.1021/ma010880h
Fischer, 1999, The persistent radical effect in controlled radical polymerizations, J Polym Sci Part A Polym Chem, 37, 1885, 10.1002/(SICI)1099-0518(19990701)37:13<1885::AID-POLA1>3.0.CO;2-1
Roa‐Luna, 2007, Assessing the Importance of Diffusion‐Controlled Effects on Polymerization Rate and Molecular Weight Development in Nitroxide‐Mediated Radical Polymerization of Styrene, J Macromol Sci Part A, 44, 193, 10.1080/10601320601031366
Detrembleur, 2014, Nitroxide mediated polymerization of methacrylates at moderate temperature, Polym Chem, 5, 335, 10.1039/C3PY01133J
Grassl, 2008, Nitroxide-mediated radical polymerization of acrylamide in water solution, Eur Polym J, 44, 50, 10.1016/j.eurpolymj.2007.10.019
Tomoeda, 2011, Nitroxide-Mediated Radical Polymerization in Microemulsion (Microemulsion NMP) of n-Butyl Acrylate, Macromolecules, 44, 5599, 10.1021/ma200859s
Kitayama, 2012, Experimental Evidence and Beneficial Use of Confined Space Effect in Nitroxide-Mediated Radical Microemulsion Polymerization (Microemulsion NMP) of n-Butyl Acrylate, Macromolecules, 45, 7884, 10.1021/ma3011763
Gibbons, 2008, Nitroxide-Mediated Radical Polymerization of N-tert-Butylacrylamide, Macromol Chem Phys, 209, 2434, 10.1002/macp.200800358
Solomon D.H., Rizzardo E, Cacioli P. Polymerization Process and Polymers Produced Thereby. US 4581429, CSIRO (1986).
Wang, 1998, Facile Synthesis of New Unimolecular Initiators for Living Radical Polymerizations, Macromolecules, 31, 6727, 10.1021/ma980729g
Guillaneuf, 2008, Synthesis of Highly Labile SG1-Based Alkoxyamines under Photochemical Conditions, J Org Chem, 73, 4728, 10.1021/jo800422a
Ballard, 2016, New Class of Alkoxyamines for Efficient Controlled Homopolymerization of Methacrylates, ACS Macro Lett, 5, 1019, 10.1021/acsmacrolett.6b00547
Junkers, 2009, Formation Efficiency of ABA Blockcopolymers via Enhanced Spin Capturing Polymerization (ESCP): Locating the Alkoxyamine Function, Macromolecules, 42, 5027, 10.1021/ma900356p
Junkers, 2011, Formation of triblock copolymers via a tandem enhanced spin capturing—nitroxide-mediated polymerization reaction sequence, J Polym Sci Part A Polym Chem, 49, 4841, 10.1002/pola.24970
Zang, 2010, Control of methyl methacrylate radical polymerization via Enhanced Spin Capturing Polymerization (ESCP), Polymer, 51, 3821, 10.1016/j.polymer.2010.06.040
Ranieri, 2012, Enhanced Spin-capturing Polymerization and Radical Coupling Mediated by Cyclic Nitrones, Aust J Chem, 65, 1110, 10.1071/CH12182
Nikitin, 2015, Enhanced spin capturing polymerization: Numerical investigation of mechanism, J Polym Sci Part A Polym Chem, 53, 2546, 10.1002/pola.27723
Peng, 2008, Organo-Cobalt Mediated Living Radical Polymerization of Vinyl Acetate, Macromolecules, 41, 2368, 10.1021/ma702500b
Peng, 2009, Formation, Dissociation, and Radical Exchange of Organo-Cobalt Complexes in Mediating Living Radical Polymerization, ACS Symp Ser, 1024, 115, 10.1021/bk-2009-1024.ch008
Peng, 2009, Formation and Interconversion of Organo-Cobalt Complexes in Reactions of Cobalt(II) Porphyrins with Cyanoalkyl Radicals and Vinyl Olefins, Inorg Chem, 48, 5039, 10.1021/ic900384n
Debuigne, 2009, Overview of cobalt-mediated radical polymerization: Roots, state of the art and future prospects, Prog Polym Sci, 34, 211, 10.1016/j.progpolymsci.2008.11.003
Wayland, 2006, Degenerative Transfer and Reversible Termination Mechanisms for Living Radical Polymerizations Mediated by Cobalt Porphyrins, Macromolecules, 39, 8219, 10.1021/ma061643n
Kumar, 2009, Radical Polymerization of Vinyl Acetate with Bis(tetramethylheptadionato)cobalt(II): Coexistence of Three Different Mechanisms, Chem Eur J, 15, 4874, 10.1002/chem.200802388
Sherwood, 2010, Controlled radical polymerisation of methyl acrylate initiated by a well-defined cobalt alkyl complex, Chem Commun, 46, 2456, 10.1039/b922030e
Gaynor, 1995, Controlled radical polymerization by degenerative transfer: Effect of the structure of the transfer agent, Macromolecules, 28, 8051, 10.1021/ma00128a012
Matyjaszewski, 1995, Controlled radical polymerizations: The use of alkyl iodides in degenerative transfer, Macromolecules, 28, 2093, 10.1021/ma00110a050
Goto, 1998, Mechanism and Kinetics of Iodide-Mediated Polymerization of Styrene, Macromolecules, 31, 2809, 10.1021/ma9712007
Koumura, 2006, Iodine Transfer Radical Polymerization of Vinyl Acetate in Fluoroalcohols for Simultaneous Control of Molecular Weight, Stereospecificity, and Regiospecificity, Macromolecules, 39, 4054, 10.1021/ma0602775
Iovu, 2003, Controlled/living radical polymerization of vinyl acetate by degenerative transfer with alkyl iodides, Macromolecules, 36, 9346, 10.1021/ma034892+
Tatemoto, 1992, Development of Iodine Transfer Polymerization and Its Applications to Telechelically Reactive Polymers, Kobunshi Ronbunshu, 49, 765, 10.1295/koron.49.765
Ameduri, 1999, Use of telechelic fluorinated diiodides to obtain well-defined fluoropolymers, J Fluorine Chem, 100, 97, 10.1016/S0022-1139(99)00220-1
Kamigaito, 2006, Stereospecific Living Radical Polymerization, ACS Symp Ser, 944, 26, 10.1021/bk-2006-0944.ch003
Borkar, 2005, Controlled copolymerization of vinyl acetate with 1-alkenes and their fluoro derivatives by degenerative transfer, J Polym Sci Part A Polym Chem, 43, 3728, 10.1002/pola.20802
Farrokhi, 2014, Controlled radical copolymerization of vinyl acetate and dibutyl maleate by iodine transfer radical polymerization, Polym Int, 63, 1494, 10.1002/pi.4651
Farrokhi, 2015, Reverse iodine transfer radical copolymerization of vinyl acetate and dibutyl maleate: synthesis and characterization of alternating and block copolymers, J Polym Res, 22, 1, 10.1007/s10965-015-0685-7
Lacroix-Desmazes, 2012, Reverse Iodine Transfer Polymerization (RITP): From Kinetics and Mechanisms to Macromolecular Engineering, ACS Symp Ser, 1100, 317, 10.1021/bk-2012-1100.ch021
Lacroix-Desmazes, 2005, Reverse Iodine Transfer Polymerization of Methyl Acrylate and n-Butyl Acrylate, Macromolecules, 38, 6299, 10.1021/ma050056j
Boyer, 2006, Reverse Iodine Transfer Polymerization (RITP) of Methyl Methacrylate, Macromolecules, 39, 4044, 10.1021/ma052358r
Hui, 2015, Reverse iodine transfer polymerization (RITP) of chloroprene, RSC Advances, 5, 44326, 10.1039/C5RA04874E
Xu, 2012, Synthesis of poly(vinyl acetate) by degenerative transfer polymerization in the presence of iodine, J Appl Polym Sci, 126, 104, 10.1002/app.36664
Patra, 2010, Synthesis of cationic amphiphilic diblock copolymers of poly(vinylbenzyl triethylammonium chloride) and polystyrene by reverse iodine transfer polymerization (RITP), React Funct Polym, 70, 408, 10.1016/j.reactfunctpolym.2010.03.006
Krstina, 1995, Narrow Polydispersity Block Copolymers by Free-Radical Polymerization in the Presence of Macromonomers, Macromolecules, 28, 5381, 10.1021/ma00119a034
Krstina, 1996, A new form of controlled growth free radical polymerization, Macromol Symp, 111, 13, 10.1002/masy.19961110104
Moad, 2008, Toward Living Radical Polymerization, Acc Chem Res, 41, 1133, 10.1021/ar800075n
Moad, 2000, Living Free Radical Polymerization with Reversible Addition Fragmentation Chain Transfer (the Life of RAFT), Polym Int, 49, 993, 10.1002/1097-0126(200009)49:9<993::AID-PI506>3.0.CO;2-6
Rizzardo, 2000, Synthesis of defined polymers by reversible addition fragmentation chain transfer, ACS Symp Ser, 768, 278, 10.1021/bk-2000-0768.ch020
Smith, 2010, Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization, Prog Polym Sci, 35, 45, 10.1016/j.progpolymsci.2009.11.005
Moad, 2003, Kinetics and Mechanism of RAFT Polymerization, ACS Symp Ser, 854, 520, 10.1021/bk-2003-0854.ch036
Moad, 2005, Advances in RAFT Polymerization: The Synthesis of Polymers with Defined End-Groups, Polymer, 46, 8458, 10.1016/j.polymer.2004.12.061
Chong, 2003, Thiocarbonylthio compounds [S:C(Ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) Role of the free-radical leaving group (R), Macromolecules, 36, 2256, 10.1021/ma020882h
Chiefari, 2002, Control of Free Radical Polymerization by Chain Transfer Methods, 263
Gody, 2015, Ultrafast RAFT polymerization: multiblock copolymers within minutes, Polym Chem, 6, 1502, 10.1039/C4PY01251H
Chong, 2006, Thermolysis of RAFT-Synthesized Poly(Methyl Methacrylate), Aust J Chem, 59, 755, 10.1071/CH06229
Moad, 2011, End-Functional Polymers, Thiocarbonylthio-Group Removal/Transformation and RAFT Polymerization, Polym Int, 60, 9, 10.1002/pi.2988
Stace, 2018, The effect of Z- and macro-R-group functionality on the thermal desulfurization of polymers synthesised with acid/base “switchable” dithiocarbamate RAFT agents, Macromol Rapid Commun, 39, 10.1002/marc.201800228
Arita, 2005, Cumyl dithiobenzoate mediated RAFT polymerization of styrene at high temperatures, Macromolecules, 38, 7935, 10.1021/ma051012d
Beuermann, 2012, Radical Polymerization at High Pressure, 875
Rzayev, 2002, Controlled/Living Free-Radical Polymerization under Very High Pressure, Macromolecules, 35, 1489, 10.1021/ma011668g
Rzayev, 2004, HP-RAFT: A free-radical polymerization technique for obtaining living polymers of ultrahigh molecular weights, Angew Chem Int Ed, 43, 1691, 10.1002/anie.200353025
Arita, 2004, RAFT-polymerization of styrene up to high pressure: Rate enhancement and improved control, Macromol Rapid Commun, 25, 1376, 10.1002/marc.200400204
Maksym, 2018, High pressure RAFT of sterically hindered ionic monomers. Studying relationship between rigidity of the polymer backbone and conductivity, Polymer, 140, 158, 10.1016/j.polymer.2018.02.030
Neuman, 1972, Pressure effects as mechanistic probes of organic radical reactions, Acc Chem Res, 5, 381, 10.1021/ar50059a004
Barner-Kowollik, 2006, Mechanism and Kinetics of Dithiobenzoate-Mediated RAFT Polymerization, 1: The Current Situation, J Polym Sci Part A Polym Chem, 44, 5809, 10.1002/pola.21589
Monteiro, 2001, Intermediate radical termination as the mechanism for retardation in reversible addition-fragmentation chain transfer polymerization, Macromolecules, 34, 349, 10.1021/ma001484m
Kwak, 2004, Characterization of low-mass model 3-arm stars produced in reversible addition-fragmentation chain transfer (RAFT) process, Macromolecules, 37, 4434, 10.1021/ma049823p
Konkolewicz, 2008, RAFT polymerization kinetics: Combination of apparently conflicting models, Macromolecules, 41, 6400, 10.1021/ma800388c
Konkolewicz, 2009, RAFT polymerization kinetics: How long are the cross-terminating oligomers?, J Polym Sci Part A Polym Chem, 47, 3455, 10.1002/pola.23385
Buback, 2007, A missing reaction step in dithiobenzoate-mediated RAFT polymerization, Macromol Symp, 248, 158, 10.1002/masy.200750217
Buback, 2006, Mechanism of Dithiobenzoate-Mediated RAFT Polymerization: A Missing Reaction Step, Macromol Rapid Commun, 27, 1299, 10.1002/marc.200600317
Meiser, 2011, Assessing the RAFT Equilibrium Constant via Model Systems: An EPR Study, Macromol Rapid Commun, 32, 1490, 10.1002/marc.201100228
Meiser, 2012, “Assessing the RAFT Equilibrium Constant via Model Systems: An EPR Study”—Response to a Comment, Macromol Rapid Commun, 33, 1273, 10.1002/marc.201200068
Sidoruk, 2013, Kinetics of Dithiobenzoate-Mediated Methyl Methacrylate Polymerization, Macromol Chem Phys, 214, 1738, 10.1002/macp.201300247
Meiser, 2013, EPR Study into Cross-Termination and Fragmentation with the Phenylethyl–Phenylethyl Dithiobenzoate RAFT Model System, Macromol Chem Phys, 214, 924, 10.1002/macp.201200668
Nejad, 2008, Synthesis of methacrylate derivatives oligomers by dithiobenzoate-RAFT-mediated polymerization, J Polym Sci Part A Polym Chem, 46, 2277, 10.1002/pola.22563
David, 2009, Peculiar Behavior of Degenerative Chain Transfer Polymerization of a Phosphonated Methacrylate, Macromol Chem Phys, 210, 631, 10.1002/macp.200800540
Keddie, 2013, The reactivity of N-vinylcarbazole in RAFT polymerization: trithiocarbonates deliver optimal control for the synthesis of homopolymers and block copolymers, Polym Chem, 4, 3591, 10.1039/c3py00487b
Thang, 1999, A Novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trthicarbonates, Tetrahedron Lett, 40, 2435, 10.1016/S0040-4039(99)00177-X
Bouhadir, 1999, A new practical synthesis of tertiary S-alkyl dithiocarbonates and related derivatives, Tetrahedron Lett, 40, 277, 10.1016/S0040-4039(98)02380-6
Keddie, 2012, RAFT Agent Design and Synthesis, Macromolecules, 45, 5321, 10.1021/ma300410v
Chiefari, 2003, Thiocarbonylthio Compounds (S:C(Z)S-R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization) Effect of the Activating Group Z, Macromolecules, 36, 2273, 10.1021/ma020883+
Perrier, 2005, Reversible addition-fragmentation chain transfer polymerization: End group modification for functionalized polymers and chain transfer agent recovery, Macromolecules, 38, 2033, 10.1021/ma047611m
Chen, 2009, Thiocarbonylthio end group removal from RAFT-synthesized polymers by a radical-induced process, J Polym Sci Part A Polym Chem, 47, 6704, 10.1002/pola.23711
Chong, 2007, Thiocarbonylthio End Group Removal from RAFT-Synthesized Polymers by Radical-Induced Reduction, Macromolecules, 40, 4446, 10.1021/ma062919u
Chen, 2014, Simplified TERP to achieve living free radical polymerization with crude ethyl 2-phenyltellanyl-2-methylpropionate as mediator, Polym Bull, 71, 1797, 10.1007/s00289-014-1155-9
Yamago, 2012, Sb, Bi, Te, and I-Transfer Polymerization and Applications, 4, 1931
Kwak, 2006, A Systematic Study on Activation Processes in Organotellurium-Mediated Living Radical Polymerizations of Styrene, Methyl Methacrylate, Methyl Acrylate, and Vinyl Acetate, Macromolecules, 39, 4671, 10.1021/ma060295m
Yamago, 2004, Highly versatile organostibine mediators for living radical polymerization, J Am Chem Soc, 126, 13908, 10.1021/ja044787v
Kwak, 2005, Mechanism and Kinetics of Organostibine-Mediated Living Radical Polymerization of Styrene, Z Phys Chem., 219, 283, 10.1524/zpch.219.3.283.59181
Yamago, 2007, Highly controlled living radical polymerization through dual activation of organobismuthines, Angew Chem Int Ed, 46, 1304, 10.1002/anie.200604473
Nakamura, 2011, Quantitative Analysis of the Effect of Azo Initiators on the Structure of α-Polymer Chain Ends in Degenerative Chain-Transfer-Mediated Living Radical Polymerization Reactions, Macromolecules, 44, 8388, 10.1021/ma201761q
Mishima, 2012, Controlled random and alternating copolymerization of (meth)acrylates, acrylonitrile, and (meth)acrylamides with vinyl ethers by organotellurium-, organostibine-, and organobismuthine-mediated living radical polymerization reactions, J Polym Sci Part A Polym Chem, 50, 2254, 10.1002/pola.26004
Feng, 2012, Highly Controlled Organotellurium-Mediated Living Radical Polymerization (TERP) in Ionic Liquids (ILs), The New Role of ILs in Radical Reactions. ACS Macro Lett, 1, 146
Mishima, 2011, Precision Synthesis of Hybrid Block Copolymers by Organotellurium-Mediated Successive Living Radical and Cationic Polymerizations, Chem Asian J, 6, 445, 10.1002/asia.201000402
Kayahara, 2009, Development of an Arylthiobismuthine Cocatalyst in Organobismuthine-Mediated Living Radical Polymerization: Applications for Synthesis of Ultrahigh Molecular Weight Polystyrenes and Polyacrylates, J Am Chem Soc, 131, 2508, 10.1021/ja8092899
Kayahara, 2011, Substituent effect on the antimony atom in organostibine-mediated living radical polymerization, Heteroatom Chem, 22, 307, 10.1002/hc.20681
Yamago, 2003, Practical Protocols for Organotellurium-Mediated Living Radical Polymerization by in Situ Generated Initiators from AIBN and Ditellurides, Macromolecules, 36, 3793, 10.1021/ma034211a
Yamago, 2009, Synthesis of Structurally Well-Defined Telechelic Polymers by Organostibine-Mediated Living Radical Polymerization: In Situ Generation of Functionalized Chain-Transfer Agents and Selective ω-End-Group Transformations, Chem Eur J, 15, 1018, 10.1002/chem.200801754
Zhong, 2011, How Fast Can a CRP Be Conducted with Preserved Chain End Functionality?, Macromolecules, 44, 2668, 10.1021/ma102834s
Wang, 1995, "Living"/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator, Macromolecules, 28, 7572, 10.1021/ma00126a041
Krys, 2016, The Borderline between Simultaneous Reverse and Normal Initiation and Initiators for Continuous Activator Regeneration ATRP, Macromolecules, 49, 7793, 10.1021/acs.macromol.6b01765
Mohammad Rabea, 2014, Controlled Radical Polymerization at High Conversion: Bulk ICAR ATRP of Methyl Methacrylate, Ind Eng Chem Res, 53, 3472, 10.1021/ie403731m
Lamson, 2016, Synthesis of well-defined polyacrylonitrile by ICARATRP with low concentrations of catalyst, J Polym Sci Part A Polym Chem, 54, 1961, 10.1002/pola.28055
Mittal, 2005, A novel tridentate nitrogen donor as ligand in copper catalyzed ATRP of methyl methacrylate, J Polym Sci Part A Polym Chem, 43, 4996, 10.1002/pola.20973
Konkolewicz, 2015, Catalyst Activity in ATRP, Determining Conditions for Well-Controlled Polymerizations, ACS Symp Ser, 1187, 87, 10.1021/bk-2015-1187.ch005
Krys, 2016, Relation between Overall Rate of ATRP and Rates of Activation of Dormant Species, Macromolecules, 49, 2467, 10.1021/acs.macromol.6b00058
Zhao, 2014, Photoinduced ICAR ATRP of Methyl Methacrylate with AIBN as Photoinitiator, J Polym Res, 21, 01
Mukumoto, 2012, Iron-Based ICAR ATRP of Styrene with ppm Amounts of FeIIIBr3 and 1,1′-Azobis(cyclohexanecarbonitrile), ACS Macro Lett, 1, 599, 10.1021/mz3001463
Jiang, 2016, A Facile Strategy for Catalyst Separation and Recycling Suitable for ATRP of Hydrophilic Monomers Using a Macroligand, Macromol Rapid Commun, 37, 143, 10.1002/marc.201500439
Goto, 2008, Reversible chain transfer catalyzed polymerization (RTCP): A new class of living radical polymerization, Polymer, 49, 5177, 10.1016/j.polymer.2008.08.044
Goto, 2013, Living radical polymerizations with organic catalysts, 250
Vana, 2010, Kinetic Simulations of Reversible Chain Transfer Catalyzed Polymerization (RTCP): Guidelines to Optimum Molecular Weight Control, Macromol Theory Simul, 19, 24, 10.1002/mats.200900064
Goto, 2010, Phenols and carbon compounds as efficient organic catalysts for reversible chain transfer catalyzed living radical polymerization (RTCP), Macromolecules, 43, 7971, 10.1021/ma101323r
Goto, 2009, Reversible chain transfer catalyzed polymerization (RTCP) with alcohol catalysts, ACS Symp Ser, 1023, 159, 10.1021/bk-2009-1023.ch011
Yorizane, 2010, Reversible Chain Transfer Catalyzed Polymerization (RTCP) of Methyl Methacrylate with Nitrogen Catalyst in an Aqueous Microsuspension System, Macromolecules, 43, 8703, 10.1021/ma101918p
Goto, 2007, Living radical polymerizations with germanium, tin, and phosphorus catalysts − Reversible chain transfer catalyzed polymerizations (RTCPs), J Am Chem Soc, 129, 13347, 10.1021/ja0755820
Kuroda, 2012, Iodine transfer dispersion polymerization (dispersion ITP) with CHI3 and reversible chain transfer catalyzed dispersion polymerization (dispersion RTCP) with GeI4 of styrene in supercritical carbon dioxide, Polymer, 53, 1212, 10.1016/j.polymer.2012.01.038
Gilbert, 1995
2013
Nomura, 2005, Emulsion Polymerization: Kinetic and Mechanistic Aspects, Adv Polym Sci, 175, 1, 10.1007/b100116
Van der Hoff, 1960, On the mechanism of emulsion polymerization of styrene. III. Polymerization initiated by oil-soluble compounds, J Polym Sci, 48, 175, 10.1002/pol.1960.1204815019
Penboss, 1983, Styrene emulsion polymerization. The effects of initiator charge, J Chem Soc Faraday Trans 1, 79, 1257, 10.1039/f19837901257
Ramos, 2007, Which are the mechanisms governing in cationic emulsion polymerization?, Eur Polym J, 43, 4647, 10.1016/j.eurpolymj.2007.09.003
Marestin, 1998, Direct Measurement of Oligomers Entry Rate onto Latex Particles in an Emulsion Polymerization, Macromolecules, 31, 1686, 10.1021/ma970332x
Sudol, 1997, Dispersion Polymerization, 141
Jiang, 2007, Kinetics of Dispersion Polymerization of Methyl Methacrylate and n-Butyl Acrylate: Effect of Initiator Concentration, Macromolecules, 40, 4910, 10.1021/ma062679i
Leswin, 2008, Particle Formation in RAFT-Mediated Emulsion Polymerization: A Calorimetric Study, Macromol Symp, 275, 24
Zetterlund, 2015, Controlled/Living Radical Polymerization in Dispersed Systems: An Update, Chem Rev, 115, 9745, 10.1021/cr500625k
Qiu, 1999, Emulsion Polymerization of n-Butyl Methacrylate by Reverse Atom Transfer Radical Polymerization, Macromolecules, 32, 2872, 10.1021/ma981695f
Qiu, 2000, Mechanistic Aspect of Reverse Atom Transfer Radical Polymerization of n-Butyl Methacrylate in Aqueous Dispersed System, Macromolecules, 33, 7310, 10.1021/ma000720q
Li, 2015, A surfactant-free emulsion RAFT polymerization of methyl methacrylate in a continuous tubular reactor, Polym Chem, 6, 5030, 10.1039/C5PY00847F
Ma, 2014, Kinetics study of living microemulsion polymerization mediated by reversible addition-fragmentation chain transfer, J Polym Res, 21, 1
Cunningham, 2014, Poly(glycerol monomethacrylate)–Poly(benzyl methacrylate) Diblock Copolymer Nanoparticles via RAFT Emulsion Polymerization: Synthesis, Characterization, and Interfacial Activity, Macromolecules, 47, 5613, 10.1021/ma501140h
Serkhacheva, 2015, Regularities of the kinetics of miniemulsion polymerization of styrene in the presence of dithiobenzoates as reversible chain transfer agents, Russ Chem Bull, 64, 2737, 10.1007/s11172-015-1216-8
Xu, 2012, RAFT-mediated batch emulsion polymerization of styrene using poly[N-(4-vinylbenzyl)-N,N-dibutylamine hydrochloride] trithiocarbonate as both surfactant and macro-RAFT agent, J Polym Sci Part A Polym Chem, 50, 2484, 10.1002/pola.26025
Huang, 2014, RAFT ab initio emulsion polymerization of styrene using poly(acrylic acid)-b-polystyrene trithiocarbonate of various structures as mediator and surfactant, Macromol React Eng, 8, 696, 10.1002/mren.201400010
Pham, 2015, Synthesis of polymeric Janus nanoparticles and their application in surfactant-free emulsion polymerizations, Polym Chem, 6, 426, 10.1039/C4PY01125B
Wutzel, 2014, Poly[N-(2-hydroxypropyl)methacrylamide] nanogels by RAFT polymerization in inverse emulsion, Polym Chem, 5, 1711, 10.1039/C3PY01280H
Jousset, 2001, Atom Transfer Radical Polymerization of Methyl Methacrylate in Water-Borne System, Macromolecules, 34, 6641, 10.1021/ma0020281
Simms, 2006, Reverse atom transfer radical polymerization of butyl methacrylate in a miniemulsion stabilized with a cationic surfactant, J Polym Sci Part A Polym Chem, 44, 1628, 10.1002/pola.21270
Zhu, 2012, Facile Soap-Free Miniemulsion Polymerization of Methyl Methacrylate via Reverse Atom Transfer Radical Polymerization, Macromol Rapid Commun, 33, 2121, 10.1002/marc.201200492
Cao, 2013, Facile iron-mediated dispersant-free suspension polymerization of methyl methacrylate via reverse ATRP in water, Macromol Rapid Commun, 34, 1747, 10.1002/marc.201300513
Song, 2015, One-step synthesis of Janus hybrid nanoparticles using reverse atom transfer radical polymerization in emulsion, Polym Chem, 6, 896, 10.1039/C4PY01474J
Beckman, 2006, Inverse Emulsion Polymerization in Carbon Dioxide, 139
Arita, 2005, RAFT polymerization of methyl acrylate in carbon dioxide, Macromol Mater Eng, 290, 283, 10.1002/mame.200400274
Beuermann, 2006, Kinetics of Free-Radical Polymerization in Homogeneous Phase of Supercritical Carbon Dioxide, 55
Kendall, 1999, Polymerizations in Supercritical Carbon Dioxide, Chem Rev, 99, 543, 10.1021/cr9700336
Pu, 2013, Dispersion polymerization of styrene in CO2-expanded ethanol, Polymer, 54, 6689, 10.1016/j.polymer.2013.10.036
Shaffer, 1996, Dispersion Polymerizations in Carbon Dioxide Using Siloxane-Based Stabilizers, Macromolecules, 29, 2704, 10.1021/ma9516798
Lepilleur, 1997, Dispersion Polymerization of Methyl Methacrylate in Supercritical CO2, Macromolecules, 30, 745, 10.1021/ma960764s
Christian, 2000, Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide with a Monofunctional Pseudo-Graft Stabilizer, Macromolecules, 33, 237, 10.1021/ma991268h
Christian, 2000, Free Radical Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide Using a Pseudo-Graft Stabilizer: Effect of Monomer, Initiator, and Stabilizer Concentrations, Macromolecules, 33, 9222, 10.1021/ma0008948
Shin, 2008, Dispersion Polymerization of Methyl Methacrylate using Poly(HDFDMA-co-MMA) as a Surfactant in Supercritical Carbon Dioxide, Ind Eng Chem Res, 47, 5680, 10.1021/ie070995v
Wang, 2005, Dispersion Catalytic Chain Transfer Polymerizations of Methyl Methacrylate in Supercritical Carbon Dioxide, Ind Eng Chem Res, 44, 8654, 10.1021/ie0502638
Shieh, 2014, Kinetics of N-isopropylacrylamide polymerizations in supercritical carbon dioxide fluids, J Supercrit Fluids, 91, 1, 10.1016/j.supflu.2014.04.002
Okubo, 2003, Production of polyacrylonitrile particles by precipitation polymerization in supercritical carbon dioxide, Colloid Polym Sci, 281, 964, 10.1007/s00396-003-0864-7
Ye, 2005, Emulsion Polymerization of N-Ethylacrylamide in Supercritical Carbon Dioxide, Macromolecules, 38, 2180, 10.1021/ma048863q
Li, 2001, Co-solvent and pressure effect on the thermal decomposition of 2,2′ azobis(isobutyronitrile) in supercritical CO2 using UV–Vis spectroscopy, J Supercrit Fluids, 21, 227, 10.1016/S0896-8446(01)00097-3
Morris, 2000, Development of a model system to study fuel autoxidation in supercritical media: decomposition kinetics of 2,2′-azobis(isobutyronitrile) in supercritical carbon dioxide, Fuel, 79, 1101, 10.1016/S0016-2361(99)00246-X
Shin, 2007, Kinetics for free radical solution polymerization of heptadecafluorodecyl (meth)acrylate in supercritical carbon dioxide, Korean J Chem Eng, 24, 664, 10.1007/s11814-007-0022-x
Gregory, 2008, Controlled dispersion polymerization of methyl methacrylate in supercritical carbon dioxide via RAFT, Macromolecules, 41, 1215, 10.1021/ma702017r
Jennings, 2012, One-Pot Synthesis of Block Copolymers in Supercritical Carbon Dioxide: A Simple Versatile Route to Nanostructured Microparticles, J Am Chem Soc, 134, 4772, 10.1021/ja210577h
Jennings, 2013, Advantages of Block Copolymer Synthesis by RAFT-Controlled Dispersion Polymerization in Supercritical Carbon Dioxide, Macromolecules, 46, 6843, 10.1021/ma401051e
Jaramillo-Soto, 2009, Effect of stabilizer concentration and controller structure and composition on polymerization rate and molecular weight development in RAFT polymerization of styrene in supercritical carbon dioxide, Polymer, 50, 5024, 10.1016/j.polymer.2009.08.036
Hawkins, 2015, RAFT polymerization in supercritical carbon dioxide based on an induced precipitation approach: Synthesis of 2-ethoxyethyl methacrylate/acrylamide block copolymers, J Polym Sci Part A Polym Chem, 53, 2351, 10.1002/pola.27688
Chen, 2016, Controlled radical polymerization of fluorinated methacrylates in supercritical CO2: Synthesis and application of a novel RAFT agent, J Polym Sci Part A Polym Chem, 54, 825, 10.1002/pola.27919
Ryan, 2005, First nitroxide-mediated free radical dispersion polymerizations of styrene in supercritical carbon dioxide, Polymer, 46, 9769, 10.1016/j.polymer.2005.08.039
McHale, 2006, Nitroxide-Mediated Radical Dispersion Polymerization of Styrene in Supercritical Carbon Dioxide Using a Poly(dimethylsiloxane-b-methyl methacrylate) Stabilizer, Macromolecules, 39, 6853, 10.1021/ma061154n
McHale, 2007, Nitroxide-Mediated Radical Precipitation Polymerization of Styrene in Supercritical Carbon Dioxide, Macromol Chem Phys, 208, 1813, 10.1002/macp.200700271
Aldabbagh, 2008, Nitroxide-mediated precipitation polymerization of styrene in supercritical carbon dioxide: Effects of monomer loading and nitroxide partitioning on control, Eur Polym J, 44, 4037, 10.1016/j.eurpolymj.2008.09.020
Aldabbagh, 2008, Improved Control in Nitroxide-Mediated Radical Polymerization Using Supercritical Carbon Dioxide, Macromolecules, 41, 2732, 10.1021/ma702645b
O’Connor, 2011, Nitroxide-mediated stabilizer-free inverse suspension polymerization of N-isopropylacrylamide in supercritical carbon dioxide, J Polym Sci Part A Polym Chem, 49, 1719, 10.1002/pola.24580
Pu, 2010, Nitroxide-mediated radical polymerization of carbon dioxide-expanded methyl methacrylate, J Polym Sci Part A Polym Chem, 48, 5636, 10.1002/pola.24343
Hong, 2002, Conventional free radical polymerization in room temperature ionic liquids: a green approach to commodity polymers with practical advantages, Chem Commun, 1368, 10.1039/b204319j
Beuermann, 2009, Solvent Influence on Propagation Kinetics in Radical Polymerizations Studied by Pulsed Laser Initiated Polymerizations, Macromol Rapid Commun, 30, 1066, 10.1002/marc.200900131
Singha, 2016, Tailor-made thermoreversible functional polymer via RAFT polymerization in an ionic liquid: a remarkably fast polymerization process, Green Chem, 18, 6115, 10.1039/C6GC01677D
Perrier, 2002, First report of reversible addition-fragmentation chain transfer (RAFT) polymerisation in room temperature ionic liquids, Chem Commun, 2226, 10.1039/B206534G
Perrier, 2003, Reversible addition–fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexfluorophosphate, Eur Polym J, 39, 417, 10.1016/S0014-3057(02)00250-1
Thurecht, 2008, Free-Radical Polymerization in Ionic Liquids: The Case for a Protected Radical, Macromolecules, 41, 2814, 10.1021/ma7026403
Puttick, 2009, RAFT-functional ionic liquids: towards understanding controlled free radical polymerisation in ionic liquids, J Mater Chem, 19, 2679, 10.1039/b817181p
Szablan, 2007, Mapping Free Radical Reactivity: A High-Resolution Electrospray Ionization−Mass Spectrometry Study of Photoinitiation Processes in Methyl Methacrylate Free Radical Polymerization, Macromolecules, 40, 26, 10.1021/ma0616559
Savitsky, 2000, Electron Spin Polarization after Photolysis of AIBN in Solution: Initial Spatial Radical Separation, J Phys Chem A, 104, 9091, 10.1021/jp001902p
Deady, 1993, Evaluation of the kinetic-parameters for styrene polymerization and their chain-length dependence by kinetic simulation and pulsed-laser photolysis, Makromol Chem, 194, 1691, 10.1002/macp.1993.021940617
Bergert, 1995, Effect of photoinitiator on the molar mass distribution obtained from a pulsed laser polymerization, Macromol Rapid Commun, 16, 425, 10.1002/marc.1995.030160604
Encinas, 1998, Microemulsion polymerization of methyl methacrylate photoinitiated by symmetrical azocompounds of different hydrophobicity, Langmuir, 14, 5691, 10.1021/la960941i
Detrembleur, 2012, Synthetic and mechanistic inputs of photochemistry into the bis-acetylacetonatocobalt-mediated radical polymerization of n-butyl acrylate and vinyl acetate, Polym Chem, 3, 1856, 10.1039/C1PY00443C
Wolpers, 2014, UV Light as External Switch and Boost of Molar-Mass Control in Iodine-Mediated Polymerization, Macromolecules, 47, 954, 10.1021/ma402537r
Zhao, 2014, Photoinduced ICAR ATRP of Methyl Methacrylate with AIBN as Photoinitiator, J Polym Res, 21, 1
Ribelli, 2014, Contribution of Photochemistry to Activator Regeneration in ATRP, Macromolecules, 47, 6316, 10.1021/ma501384q
Balili, 2011, Photoinitiated ambient temperature copper-catalyzed atom transfer radical addition (ATRA) and cyclization (ATRC) reactions in the presence of free-radical diazo initiator (AIBN), Dalton Trans, 40, 3060, 10.1039/c0dt01764g
Yoshida, 2014, Elucidation of Acceleration Mechanisms by a Photosensitive Onium Salt for Nitroxide-Mediated Photocontrolled/Living Radical Polymerization, Open f Polym Chem, 4, 47, 10.4236/ojpchem.2014.43006
Ebner, 2011, One decade of microwave-assisted polymerizations: Quo vadis?, Macromol Rapid Commun, 32, 254, 10.1002/marc.201000539
Kempe, 2011, Microwave-Assisted Polymerizations: Recent Status and Future Perspectives. Macromolecules, 44, 5825
Fang, 2016, Microwave-Assisted Free Radical Polymerizations, Adv Polym Sci, 274, 87, 10.1007/12_2013_276
Brooks, 2012, Microwave-assisted RAFT polymerization, Israel J Chem, 52, 256, 10.1002/ijch.201100140
Brooks, 2012, Reversible addition-fragmentation chain transfer polymerization under microwave heating conditions, ACS Symp Ser, 1100, 277, 10.1021/bk-2012-1100.ch018
Fellows, 2005, Preliminary observations on the copolymerisation of acceptor monomer:donor monomer systems under microwave irradiation, Cent Eur J Chem, 3, 40
Costa, 2010, Rapid decomposition of a cationic azo-initiator under microwave irradiation, J Appl Polym Sci, 118, 1421
Ergan, 2013, The effects of microwave power and dielectric properties on the microwave-assisted decomposition kinetics of AIBN in n-butanol, J Ind Eng Chem, 19, 299, 10.1016/j.jiec.2012.08.015
Adlington, 2013, Mechanistic Investigation into the Accelerated Synthesis of Methacrylate Oligomers via the Application of Catalytic Chain Transfer Polymerization and Selective Microwave Heating, Macromolecules, 46, 3922, 10.1021/ma400022y
Smith, 2010, Temperature Dependence of the Dielectric Properties of 2,2′-Azobis(2-methyl-butyronitrile) (AMBN), Ind Eng Chem Res, 49, 3011, 10.1021/ie901389a
Costa, 2015, Kinetic Parameters of the Initiator Decomposition in Microwave and in Conventional Batch Reactors – KPS and V50-Case Studies, Macromol React Eng, 9, 366, 10.1002/mren.201500013
Tu, 2010, Mechanism study and molecular design in controlled/“living” radical polymerization, Sci China Chem, 53, 1605, 10.1007/s11426-010-4051-7
Hayden, 2014, A Critical Investigation on the Occurrence of Microwave Effects in Emulsion Polymerizations, Macromol Chem Phys, 215, 2318, 10.1002/macp.201400279
Sugihara, 2012, Assessment of the influence of microwave irradiation on conventional and RAFT radical polymerization of styrene, Polym Chem, 3, 2801, 10.1039/c2py20434g
Kwak, 2012, Critical Evaluation of the Microwave Effect on Radical (Co)Polymerizations, Macromol Rapid Commun, 33, 80, 10.1002/marc.201100618
Rintoul, 2017, Kinetic control of aqueous polymerization using radicals generated in different spin states, Processes, 5, 1
Udagawa, 2012, Magnetic field effect on photosensitized oxidation of 1,3-diphenylisobenzofuran in SDS micellar solution, J Photochem Photobiol A, 238, 16, 10.1016/j.jphotochem.2012.04.005
Bag, 1998, Polymerization under magnetic field—II. Radical polymerization of acrylonitrile, styrene and methyl methacrylate, Polymer, 39, 525, 10.1016/S0032-3861(97)00303-0
Khudyakov, 2013, Transient free radicals in viscous solvents, Res Chem Intermed, 39, 781, 10.1007/s11164-012-0703-x
Iliev, 2013, Inversion of the magnetic field effect on the radical methyl methacrylate homopolymerization in bulk at a transition from a constant to pulsatile magnetic field. God Sofii Univ "Sv Kliment Okhridski", Khim Fak, 104-105, 109
Chiriac, 2005, Polymerization in a magnetic field. XV Some azo-initiators behavior in a high magnetic field, J Appl Polym Sci, 98, 1025, 10.1002/app.22218
Chiriac, 2004, Polymerization in magnetic field. XVI. Kinetic aspects regarding methyl methacrylate polymerization in high magnetic field, J Polym Sci Part A Polym Chem, 42, 5678, 10.1002/pola.20337
Lv, 2013, Reduction of the rate retardation effect in bulk RAFT radical polymerization under an externally applied magnetic field, Polym Chem, 4, 908, 10.1039/c2py20998e