A Critical Assessment of Cyclic Softening and Hardening Behavior in a Near-α Titanium Alloy During Thermomechanical Fatigue

Kartik Prasad1, Rajdeep Sarkar2, K. Bhanu Sankara Rao3, M. Sundararaman4
1Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058, India
2Defence Metallurgical Research Laboratory, Hyderabad, India
3Ministry of steel chair professor, Mahatma Gandhi Institute of Technology, Hyderabad, India
4Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

C. Soares, Gas Turbines: A Handbook of Air, Land and Sea applications. Butterworth-Heinemann, New York, NY, 2008, pp. 679-716

M. P. Boyce: Gas Turbine Engineering Handbook. 4th edition. Butterworth-Heinemann, New York, NY, 2012, pp. 803–883.

R. C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006

[4] H. Sehitoglu: J. Eng. Mater. Technol.,1985, vol. 107, pp. 221-226

[5] R. Viswanathan: Damage Mechanisms and Life Assessment of High Temperature Components, ASM International, 2nd Edition, Ohio, US, 1993

[6] R. J. Lancaster, M. T. Whittaker, and S. J. Williams: Mater. High Temperature.2013, vol. 30, pp. 2-12

[7] K. Prasad, and V. Kumar: Mater. Sci. Eng. A.,2011, vol. 528A, pp. 6263-6270

K. Prasad, Phani. S. Karamched, A. Bhattacharjee, V. Kumar, K. Bhanu Sankara Rao, and M. Sundararaman: Mater. Design, 2015, vol. 65, pp. 297-311

[9] K. Prasad, V. Kumar, K. Bhanu Sankara Rao, and M. Sundararaman: Metall. Mater. Trans. A., 2016, vol. 47, pp. 3713-3730

D. F. Neal. Development and evaluation of high temperature titanium alloy IMI 834, in P. Lacombe, R. Tricot, G. Beranger (Eds.), Proceedings of 6th world conference on titanium, Cannes, France, 1988, p. 253-258

D. F. Neal, and S. P. Fox. The influence of Silicon and Silicides on the properties of Near Alpha Titanium Alloys, In: F. H. Froes and I. Caplan (Eds.), Titanium 92 Science and Technology, The Minerals, Metals & Materials Society, Warrendale, 1993, p. 287-294.

G. Lütjering, and J. C. Williams: Titanium, 2nd Edition, Springer, New York, 2007.

[13] E. S. Sounim: Metall. Mater. Trans. A,2001, vol. 32A, 285-293

[14] S. Hardt, H. J. Maier, and H. J. Christ:Int. J. Fatigue.1999, vol. 21, pp. 779-789

[15] K. Prasad, and V. K. Varma: Mater. Sci. Eng. A.,2008, vol. 486A, pp. 158-166.

[16] K. Prasad, and S. V. Kamat: Mater. Sci. Eng. A,2008, vol. 490A, pp. 477-480

[17] K. Prasad, R. Sarkar, P. Ghosal, and V. K. Varma: Mater. Sci. Eng. A.,2008, vol. 494A, pp. 227-31

[18] K. Prasad, and V. Kumar: Mater. Design.2011, vol. 32, pp. 1710-15

[19] N. Singh and V. Singh: Mater. Sci. Eng. A,2008, vol. 485A, pp. 130-139

[20] P. Pototzky, H. J. Maier, and H. J. Christ:Metall. Mater. Trans. A.,1998, vol. 29A, pp. 2995-3004

P. Pototzky, H. J. Maier, and H.J. Christ. Behavior of the high temperature titanium alloy IMI 834 under thermomechanical and isothermal fatigue conditions. In: Third symposium on thermo-mechanical fatigue behavior of materials, H. Sehitoglu and H. J. Maier (Eds.), ASTM STP 1371, West Conshohocken (PA): 1999, pp. 18–35

Christ HJ (2007). Materials Science and Engineering: A, 468, 98-108.

[23] H. J. Maier, and H. J. Christ:Int. J. Fatigue.1997, vol. 19, pp. S267-S274

ASTM Standard E 2368-10: Standard practice for strain controlled thermomechanical fatigue testing, In: Annual book of ASTM standards, vol. 3.01, ASTM International, West Conshohocken, 2010

C. Ramchandra, A. K. Singh, and G. V. K. Sharma: Metall. Trans. A,1993, vol. 24, pp. 1273-1280

N. Singh, PhD Thesis, Banaras Hindu University, Varanasi, 2004, India

[27] K. Prasad, R. Sarkar, V. Kumar, K. Bhanu Sankara Rao, and M. Sundararaman: Mater. Sci. Eng. A., 2016, vol. 662, pp. 373-384

H. Renner, H. Kestler, and H. Mughrabi, Influence of heat treatment and microstructure on the low cycle fatigue properties of the hot forgerd near –α titanium alloy IMI 834, In: Fatigue ’96, Procrrdings of the sixth international congress. G. Lütjering and H Nowack (Eds.), Oxford: Pergamo, 1996, pp. 935-940

[29] M. E. Nixon, O Cazacu, and R A Lebensohn: Int. J. Plasticity, 2010, vol. 26, pp. 516-532

[30] T. Neeraj, M F Savage, J. Tatalovich, L. Kovarik, R. W. Hayes, and M. J. Mills: Phil. Mag., 2005, vol. 85, pp. 279-295

[31] A. S. Beranger, X. Feaugas, and M. Clavel: Mater. Sci. Eng. A.,1993, vol. 172A, pp. 31-41

[32] J. C. Williams, R. G. Baggerly, and N. E. Paton: Metall. Mater. Trans. A.,2002, vol. 33A, pp. 837-850

M. J. Blackburn: Trans. Met. Soc. AIME,1967, vol. 239, pp. 1200-1208.

[34] F. A. Crossley: Metall. Trans.,1970, vol. 1, pp. 1921-1929

[35] C. E. Shamblen, and T. K. Redden: Metall. Trans.,1972, vol. 3, 1299-1305

[36] D. J. Truax, and C. J. McMahon Jr: Mater. Sci. Eng. A.,1974, vol. 13A, pp. 125

[37] T. K. G. Namboodhiri, C. J. McMahon Jr, and H. Herman: Metall. Trans.,1973, vol. 4, pp. 1323-1331

[38] W. J. Donlon, J. E. Allison, J. V. Laseki. The influence of thermal exposure on properties and microstructure of elevated temperature titanium alloys, In: F. H. Froes, I. Caplan (Eds.), Titanium ’92 Science and Technology, TMS, Warrendale, 1993, pp. 295-302

M. T. Cope, M. J. Hill, The influence of aging temperature on the mechanical properties of IMI 834, In: Proceedings of the sixth world conf. on titanium, P Lacombe, R. Tricot, G. Beranger (Eds.)., France, 1988, pp. 153-158.

[40] A. P. Woodfield, P. J. Postans, M. H. Loretto, and R. E. Smallman: Acta Metall., 1988, vol. 36, pp. 507-15

A. Madsen, E. Andrieu, and H. Ghonem: Mater. Sci. Eng. A.,1993, vol. 171A, pp. 191-197

[42] X. D. Zhang, J. M. K. Wiezorek, W. A. Baeslack, D. J. Evans, and H. L. Fraser: Acta Mater.,1998, vol. 46, pp. 4485-4495.

[43] G. J. Baxter, W. M. Rainforth, and L. Grabowski: Acta Mater., 1996, vol.44, pp.3453-3463

K. Gopinath, A. K. Gogia, S. V. Kamat, R. Balamuralikrishnan, and U. Ramamurty: Acta. Mater., 2009, vol. 57, pp. 3450-3459

[45] P. G. McCormick: Acta. Metall.,1972, vol. 20, pp. 351-354

[46] A Van den Beukel: Physica status Solidi,1975, vol. 30, pp. 197

[47] A Van den Beukel, and U. F. Kocks: Acta Metall.,1982, vol. 30, pp. 1027-1034

[48] Y. Estrin, and L. P. Kubin: Mater. Sci. Eng. A.,1991, vol. 137A, pp. 125-134

[49] P. Hähner: Mater. Sci. Eng. A.,1996, vol. 207A, pp. 208-215

[50] K. Prasad, S. Amrithapandian, B. K. Panigrahi, V. Kumar, K. Bhanu Sankara Rao, and M. Sundararaman: Mater. Sci. Eng. A.,2015, vol. 638A, pp. 90-96

[51] M. A. Soare, and W. A. Curtin: Acta Mater.,2008, vol. 56,pp. 4046-4061

[52] T. Tabata, H. Fujita, and Y. Nakajima: Acta Metall.,1980, vol. 28, pp. 795-805

[53] H. Fujita, and T. Tabata: Acta Metall.1977, vol. 25, pp. 793-800

[54] K. Tsuzaki, T. Hori, T. Maki, and I. Tamura: Mater. Sci. Eng. A.,1983, vol. 61A, pp. 247-260

[55] K. Tsuzaki, Y. Matsuzaki, T. Maki, and I. Tamura: Mater Sci Eng. A.,1991, vol. 142A, pp. 63-70

M.G. Castelli, R.V. Miner, and D.N. Robinson: Thermomechanical fatigue deformation behavior of a dynamic strain aging alloy, Hastelloy X, In: Thermomechanical fatigue behavior of materials, Sehitoglu H (Ed.,), ASTM STP 1186, Philadelphia (PA), 1993, pp. 107–25

[57] Z. Y. Huang, J-L Chaboche, Q. Y. Wang, D. Wagner, and C. Bathias: Mater Sci Eng. A., 2014, vol. 589A, pp. 34-40

[58] H. M. Rosenberg: Vacancies and other point defects in metals and alloys, Institute of metals, London, 1958, p. 206

[59] H. Mecking, and Y. Estrin: Scripta Metall.,1980, vol. 14, pp. 815-819

R. E. Reed-Hill, R. Abbaschian, and L. Abbaschian: Physical metallurgy principles. 3rd edition. Thomson Asia (P) Ltd., Singapore. 2003

[61] T. H. Sanders, and E. A. Starke Jr.: Metall. Trans. A.,1976, vol. 7A, pp. 1407-1408

[62] K. Bhanu Sankara Rao, H. Schiffers, H. Schuster, and G. R. Halford: Metall. Mater. Trans. A.,1996, vol. 27A, pp. 255-267

[63] S. D. Antolovich, and R. W. Armstrong: Prog. Mater. Sci.,2014, vol. 59, pp. 1-160.

[64] K. Prasad, S. Abhaya, G. Amarendra, Vikas Kumar, K. V. Rajulapati, and K. Bhanu Sankara Rao: Eng. Fract. Mech.,2013, vol. 102, pp. 194-206