A Coupled Thermal, Fluid Flow, and Solidification Model for the Processing of Single-Crystal Alloy CMSX-4 Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair (Part I)

Metallurgical and Materials Transactions B - Tập 45 - Trang 2247-2261 - 2014
Ranadip Acharya1, Rohan Bansal1,2, Justin J. Gambone1,3, Suman Das1,4
1George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
2Chart Industries, Buffalo, USA
3GE Global Research, Niskayuna, USA
4School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, USA

Tóm tắt

Scanning laser epitaxy (SLE) is a new laser-based additive manufacturing technology under development at the Georgia Institute of Technology. SLE is aimed at the creation of equiaxed, directionally solidified, and single-crystal deposits of nickel-based superalloys through the melting of alloy powders onto superalloy substrates using a fast scanning Nd:YAG laser beam. The fast galvanometer control movement of the laser (0.2 to 2 m/s) and high-resolution raster scanning (20 to 200 µm line spacing) enables superior thermal control over the solidification process and allows the production of porosity-free, crack-free deposits of more than 1000 µm thickness. Here, we present a combined thermal and fluid flow model of the SLE process applied to alloy CMSX-4 with temperature-dependent thermo-physical properties. With the scanning beam described as a moving line source, the instantaneous melt pool assumes a convex hull shape with distinct leading edge and trailing edge characteristics. Temperature gradients at the leading and trailing edges are of order 2 × 105 and 104 K/m, respectively. Detailed flow analysis provides insights on the flow characteristics of the powder incorporating into the melt pool, showing velocities of order 1 × 10–4 m/s. The Marangoni effect drives this velocity from 10 to 15 times higher depending on the operating parameters. Prediction of the solidification microstructure is based on conditions at the trailing edge of the melt pool. Time tracking of solidification history is incorporated into the model to couple the microstructure prediction model to the thermal-fluid flow model, and to predict the probability of the columnar-to-equiaxed transition. Qualitative agreement is obtained between simulation and experimental result.

Tài liệu tham khảo

R.J. Stueber, T. Milidantri, and M. Tadayon: Chromalloy Gas Turbine Corporation, 1994, p. 8. J.J. Marcin, Jr., J.A. Neutra, D.H. Abbott, J.P. Aduskevich, D.M Shah, D.N. Carraway, R.P. Langevin, M.R. Sauerhoefer, and R.A. Stone: United technologies Corporation, 2001, p. 19. M. Gaumann: EPFL Lausanne, Lausanne, 1999, p 117. A. Mortensen and S. Suresh: Functionally graded metals and metal-ceramic composites: Part 1 processing. Maney, London, ROYAUME-UNI, 1995. Weiping Liu and J. N. DuPont: Acta Materialia 2004, vol. 52, pp. 4833-4847. M. Gäumann, S. Henry, F. Cléton, J. D. Wagnière and W. Kurz: Materials Science and Engineering: A 1999, vol. 271, pp. 232-241. T. D. Anderson, J. N. DuPont and T. DebRoy: Acta Materialia 2010, vol. 58, pp. 1441-1454. S. Mokadem: EPFL Lausanne, Lausanne, 2004, p. 214. S. Mokadem, C. Bezençon, A. Hauert, A. Jacot and W. Kurz: Metallurgical and Materials Transactions A 2007, vol. 38, pp. 1500-1510. M. Gäumann, C. Bezençon, P. Canalis and W. Kurz: Acta Materialia 2001, vol. 49, pp. 1051-1062. T. H. C. Childs, C. Hauser and M. Badrossamay: CIRP Annals - Manufacturing Technology 2004, vol. 53, pp. 191-194. T. H. Childs and A. Tontowi: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2001, vol. 215, pp. 1481-1495. C. Hauser and T. H. C. Childs: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2005, vol. 219, pp. 379-384. W. Zhang, C. H. Kim and T. DebRoy: Journal of Applied Physics 2004, vol. 95, pp. 5210-5219. K. Mundra, T. DebRoy and K. M. Kelkar: Numerical Heat Transfer, Part A: Applications 1996, vol. 29, pp. 115-129. M Picasso and AFA Hoadley: International Journal of Numerical Methods for Heat & Fluid Flow 1994, vol. 4, pp. 61-83. D. V. Bedenko and O. B. Kovalev, Thermophys. Aeromech. 2013, vol. 20, pp. 251-261. Z. Liu and H. Qi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1903–1915. Jyotirmoy Mazumder, Optical Engineering 1991, vol. 30, pp. 1208-1219. C. L. Chan, J. Mazumder and M. M. Chen, Journal of Applied Physics 1988, vol. 64, p. 6166. L. X. Yang, X. F. Peng and B. X. Wang, International Journal of Heat and Mass Transfer 2001, vol. 44, pp. 4465-4473. M. Rappaz and Ch. A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345–360. Weiping Liu and J. N. DuPont: Acta Materialia 2005, vol. 53, pp. 1545-1558. R. Acharya, J.J. Gambone, R. Bansal, P. Cilino, and S. Das: in EPD Congress 2013, John Wiley & Sons, Inc., Hoboken, NJ, pp 55–62. Wenda Tan, Shaoyi Wen, Neil Bailey and YungC Shin, Metall and Materi Trans B 2011, vol. 42B, pp. 1306-1318. Taishi Matsushita, Hans-Jörg Fecht, Rainer K. Wunderlich, Ivan Egry and Seshadri Seetharaman, J. Chem. Eng. Data 2011, vol. 54, pp. 2584-2592. R. Acharya, R. Bansal, J.J. Garnbone, and S. Das: CFD Modeling and Simulation in Materials Processing. Wiley, Hoboken, 2012, pp. 197–204. Merton C Flemings, Metallurgical transactions 1974, vol. 5, pp. 2121-2134. MB Henderson, D Arrell, R Larsson, M Heobel and G Marchant: Science and Technology of Welding & Joining 2004, vol. 9, pp. 13-21. D Dye, O Hunziker and RC Reed: Acta Materialia 2001, vol. 49, pp. 683-697. LO Osoba, RK Sidhu and OA Ojo: Materials Science and Technology 2011, vol. 27, pp. 897-902. Gürel Çam and Mustafa Koçak: International Materials Reviews 1998, vol. 43, pp. 1-44. M.J. Donachie, S.J. Donachie: Superalloys: A Technical Guide. 2nd ed., ASM International, Materials Park, OH, 2003, pp. 246–47. Ian Hamill: Implementation of a Solidification Model in CFX-5, CFX Ltd., Oxfordshire, UK, May 2003. Julian C. Smith, Peter Harriot, Warren L. McCabe: Unit Operations of Chemical Engineering. 7th ed., McGraw-Hill, New York, 2005, pp. 163-65. O. Hunziker, D. Dye, S.M. Roberts, and R.C. Reed: in Mathematical Modelling of Weld Phenomena, vol. 5, IOM Communications, London, 2001, pp 299–320.