A Counterintuitive Mg2+-dependent and Modification-assisted Functional Folding of Mitochondrial tRNAs
Tài liệu tham khảo
Wittenhagen, 2003, Impact of disease-related mitochondrial mutations on tRNA structure and function, Trends Biochem. Sci., 28, 605, 10.1016/j.tibs.2003.09.006
Coulbault, 2005, A novel mutation in the mitochondrial tRNAAsn gene associated with a lethal disease, Biochem. Biophys. Res. Commun., 329, 1152, 10.1016/j.bbrc.2005.02.083
Agris, 1996, The importance of being modified: Roles of modified nucleosides and Mg2+ in RNA structure and function, vol. 53, 79
Nobles, 2001, Highly conserved modified nucleosides influence Mg2+-dependent tRNA folding, Nucl. Acids Res., 30, 4751, 10.1093/nar/gkf595
Sprinzl, 2005, Compilation of tRNA sequences and sequences of tRNA genes, Nucl. Acids Res., 33, D139, 10.1093/nar/gki012
Barrell, 1974, Transfer RNA biosynthesis: the nucleotide sequence of a precursor to serine and proline transfer RNAs, Proc. Natl Acad. Sci. USA, 71, 413, 10.1073/pnas.71.2.413
Helm, 1998, The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA, Nucl. Acids Res., 26, 1636, 10.1093/nar/26.7.1636
Helm, 1999, A Watson-Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys, Biochemistry, 38, 13338, 10.1021/bi991061g
Rainaldi, 2003, PLMItRNA, a database on the heterogeneous genetic origin of mitochondrial tRNA genes and tRNAs in photosynthetic eukaryotes, Nucl. Acids Res., 31, 436, 10.1093/nar/gkg080
Onoa, 2004, RNA folding and unfolding, Curr. Opin. Struct. Biol., 14, 374, 10.1016/j.sbi.2004.04.001
Thirumalai, 2001, Early events in RNA Folding, Annu. Rev. Phys. Chem., 52, 751, 10.1146/annurev.physchem.52.1.751
Misra, 2002, The linkage between magnesium binding and RNA folding, J. Mol. Biol., 317, 507, 10.1006/jmbi.2002.5422
Shi, 2000, The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited, RNA, 6, 1091, 10.1017/S1355838200000364
Serebrov, 2001, Mg2+ induced tRNA folding, Biochemistry, 40, 6688, 10.1021/bi002241p
Sakurai, 2005, Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm, Nucl. Acids Res., 33, 1653, 10.1093/nar/gki309
Moriya, 1994, A novel modified nucleoside found at the first position of the anticodon of methionine tRNA from bovine liver mitochondria, Biochemistry, 33, 2234, 10.1021/bi00174a033
Larkin, 2002, Identification of essential domains for Escherichia coli tRNALeu aminoacylation and amino acid editing using minimalist RNA molecules, Nucl. Acids Res., 30, 2103, 10.1093/nar/30.10.2103
Wittenhagen, 2002, Dimerization of a pathogenic human mitochondrial tRNA, Nature Struct. Biol., 9, 586
Behlen, 1992, An ultraviolet light-induced crosslink in yeast tRNAPhe, Nucl. Acids Res., 20, 4055, 10.1093/nar/20.15.4055
Montero, 2000, Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion, Nature Cell Biol., 2, 57, 10.1038/35000001
Clark, 1997, CD, absorption and thermodynamic analysis of repeating dinucleotide DNA, RNA and hybrid duplexes [d/r(AC)]12·[d/r(GT/U)]12 and the influence of phosphorothioate substitution, Nucl. Acids Res., 25, 4098, 10.1093/nar/25.20.4098
Agris, 1996, Ribosome-independent anticodon to codon binding assessed by circular dichroism: roles of base modifications, Mg2+ and 2′OH, Biospectroscopy, 2, 205, 10.1002/(SICI)1520-6343(1996)2:4<205::AID-BSPY1>3.0.CO;2-5
Sosnick, 2000, Application of circular dichroism to study RNA folding transitions, Methods Enzymol., 317, 393, 10.1016/S0076-6879(00)17026-0
Yarian, 1999, Structural and functional roles of the N1- and N3-protons of Ψ at tRNA's position 39, Nucl. Acids Res., 27, 3543, 10.1093/nar/27.17.3543
Agris, 2004, Decoding the genome, a modified view, Nucl. Acids Res., 32, 223, 10.1093/nar/gkh185
Koshlap, 1999, A distinctive RNA fold: the solution structure of an analog of the yeast tRNAPhe TΨC domain, Biochemistry, 38, 8647, 10.1021/bi990118w
Sengupta, 2000, Modified constructs of tRNA's TΨC-domain to probe substrate conformational requirements of m1A58 and m5U54-tRNA methyltransferases, Nucl. Acids Res., 28, 1374, 10.1093/nar/28.6.1374
Gale, 1996, Evidence that specificity of microhelix charging by a class I tRNA synthetase occurs in the transition state of catalysis, Biochemistry, 35, 608, 10.1021/bi9520904
Sugiura, 2000, The 2.0 A crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules, Structure, 8, 197, 10.1016/S0969-2126(00)00095-2
Senger, 1996, Yeast tRNA(Met) recognition by methionyl-tRNA synthetase requires determinants from the primary, secondary and tertiary structure: a review, Biochimie, 78, 597, 10.1016/S0300-9084(96)80006-X
Spencer, 2004, Characterization of the human mitochondrial methionyl-tRNA synthetase, Biochemistry, 43, 9743, 10.1021/bi049639w
Hsu, 2006, Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles, J. Biol. Chem., 281, 23075, 10.1074/jbc.M601606200
Helm, 2000, Search for characteristic structural features of mammalian mito-tRNAs, RNA, 6, 1356, 10.1017/S1355838200001047
Shelton, 2001, Altering the intermediate in the equilibrium folding of unmodified yeast tRNAPhe with monovalent and divalent cations, Biochemistry, 40, 3629, 10.1021/bi002646+
Heilman-Miller, 2001, Role of counterion condensation in folding of the Tetrahymena ribozyme. I. Equilibrium stabilization by cations, J. Mol. Biol., 306, 1157, 10.1006/jmbi.2001.4437
Pyle, 2002, Metal ions in the structure and function of RNA, J. Biol. Inorg. Chem., 7, 679, 10.1007/s00775-002-0387-6
Russell, 2000, Small angle X-ray scattering reveals a compact intermediate in RNA folding, Nature Struct. Biol., 7, 367, 10.1038/80691
Buchmueller, 2000, A collapsed non-native RNA folding state, Nature Struct. Biol., 7, 362, 10.1038/75125
Murthy, 2000, Is counterion delocalization responsible for collapse in RNA folding?, Biochemistry, 39, 14365, 10.1021/bi001820r
Woodson, 2000, Compact but disordered states of RNA, Nature Struct. Biol., 7, 349, 10.1038/75106
Wilson, 2001, Importance of specific nucleotides in the folding of the natural form of the hairpin ribozyme, Biochemistry, 40, 2291, 10.1021/bi002644p
Woodson, 2001, Folding mechanisms of group I ribozymes: role of stability and contact order, Biochem. Soc. Trans., 30, 1166, 10.1042/bst0301166
Trieber, 2001, Beyond kinetic traps in RNA folding, Curr. Opin. Struct. Biol., 11, 309, 10.1016/S0959-440X(00)00206-2
Tinoco, 1999, How RNA folds, J. Mol. Biol., 293, 271, 10.1006/jmbi.1999.3001
Russell, 2002, Exploring the folding landscape of a structured RNA, Proc. Natl Acad. Sci. USA, 99, 155, 10.1073/pnas.221593598
Schultes, 2005, Compact and ordered collapse of randomly generated RNA sequences, Nature Struct. Mol. Biol., 12, 1130, 10.1038/nsmb1014
Stuart, 2003, Naturally occurring modification restricts the anticodon domain conformational space of tRNAPhe, J. Mol. Biol., 334, 901, 10.1016/j.jmb.2003.09.058
Cabello-Villegas, 2002, Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNAPhe, J. Mol. Biol., 319, 1015, 10.1016/S0022-2836(02)00382-0
Buchmueller, 2000, A collapsed non-native RNA folding state, Nature Struct. Biol., 7, 362, 10.1038/75125
Schroeder, 2002, RNA folding in vivo, Curr. Opin. Struct. Biol., 12, 296, 10.1016/S0959-440X(02)00325-1
Kramer, 1981, Secondary structure formation during RNA synthesis, Nucl. Acids Res., 9, 5109, 10.1093/nar/9.19.5109
Pan, 2006, RNA folding during transcription, Annu. Rev.Biophys. Biomol. Struct., 35, 161, 10.1146/annurev.biophys.35.040405.102053
Boyle, 1980, Sequential folding of transfer RNA. A nuclear magnetic resonance study of successively longer tRNA fragments with a common 5′ end, J. Mol. Biol., 139, 601, 10.1016/0022-2836(80)90051-0
Adilakshmi, 2005, Protein-independent folding pathway of the 16 S rRNA 5′ domain, J. Mol. Biol., 351, 508, 10.1016/j.jmb.2005.06.020
Sosnick, 2003, RNA folding: models and perspectives, Curr. Opin. Struct. Biol., 13, 309, 10.1016/S0959-440X(03)00066-6
Newby, 2001, A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture, RNA, 7, 833, 10.1017/S1355838201002308
Björk, 1995, Biosynthesis and function of modified nucleosides, 165
Schroeder, 2002, RNA folding in vivo, Curr. Opin. Struct. Biol., 12, 296, 10.1016/S0959-440X(02)00325-1
Zheng, 2001, Formation of a GNRA tetraloop in P5abc can disrupt an interdomain interaction in the Tetrahymena group I ribozyme, Proc. Natl Acad. Sci. USA, 98, 3695, 10.1073/pnas.051608598
Silverman, 1999, Quantifying the energetic interplay of RNA tertiary and secondary structure interactions, RNA, 5, 1555, 10.1017/S1355838299991823
Durant, 1999, Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base-pair and by pseudouridine, J. Mol. Biol., 285, 115, 10.1006/jmbi.1998.2297
Cabello-Villegas, 2005, Solution structure of psi32-modified anticodon stem-loop of Escherichia coli tRNAPhe, Nucl. Acids Res., 33, 6961, 10.1093/nar/gki1004
Meroueh, 2000, Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA, Nucl. Acids Res., 28, 2075, 10.1093/nar/28.10.2075
Sumita, 2005, Effects of nucleotide substitution and modification on the stability and structure of helix 69 from 28S rRNA, RNA, 11, 1420, 10.1261/rna.2320605
Yarian, 2000, Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNALysUUU species, Biochemistry, 39, 13390, 10.1021/bi001302g
Guenther, 1988, Purification of transfer RNA species by single-step ion-exchange HPLC, J. Chromatog., 444, 79, 10.1016/S0021-9673(01)94010-5
Sampson, 1988, Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro, Proc. Natl Acad. Sci. USA, 85, 1033, 10.1073/pnas.85.4.1033
Milligan, 1987, Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates, Nucl. Acids Res., 15, 8783, 10.1093/nar/15.21.8783
Puglisi, 1989, Absorbance melting curves of RNA, Methods Enzymol., 180, 304, 10.1016/0076-6879(89)80108-9
McDowell, 1996, Investigation of the structural basis for thermodynamic stabilities of tandem GU mismatches: solution structure of (rGAGGUCUC)2 by two-dimensional NMR and simulated annealing, Biochemistry, 35, 14077, 10.1021/bi9615710
Guenther, 1992, Magnesium-induced conformational transition in a DNA analog of the yeast tRNAPhe anticodon stem-loop, Biochemistry, 31, 11004, 10.1021/bi00160a009
Dao, 1992, The role of 5-methylcytidine in the anticodon arm of yeast tRNAPhe: site-specific Mg2+ binding and coupled conformational transition in DNA analogs, Biochemistry, 31, 11012, 10.1021/bi00160a010
Piotto, 1992, Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions, J. Biomol. NMR, 2, 661, 10.1007/BF02192855
Rho, 2000, The bI4 group I intron binds directly to both its protein splicing partners, a tRNA synthetase and maturase, to facilitate RNA splicing activity, RNA, 6, 1882, 10.1017/S1355838200001254
Martinis, 1977, Non-standard amino acid recognition by Escherichia coli leucyl-tRNA synthetase, Nucl. Acids Symp. Ser., 26, 125
Lincecum, 2003, Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase, Mol. Cell., 11, 951, 10.1016/S1097-2765(03)00098-4
Mursinna, 2001, A conserved threonine within Escherichia coli leucyl-tRNA synthetase prevents hydrolytic editing of leucyl-tRNALeu, Biochemistry, 40, 5376, 10.1021/bi002915w