A Counterintuitive Mg2+-dependent and Modification-assisted Functional Folding of Mitochondrial tRNAs

Journal of Molecular Biology - Tập 362 - Trang 771-786 - 2006
Christopher I. Jones1, Angela C. Spencer2, Jennifer L. Hsu3, Linda L. Spremulli2, Susan A. Martinis3, Michele DeRider1, Paul F. Agris1
1Department of Structural and Molecular Biology, 128 Polk Hall, Campus Box 7622, North Carolina State University, Raleigh, NC 27695-7622, USA
2Department of Chemistry, Campus Box 3290, Venable and Kenan Laboratories, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA
3Department of Biochemistry, 419 Roger Adams Laboratory, Box B-4, 600 S. Mathews Ave., University of Illinois at Urbana-Champaign, Urbana, Il 61801, USA

Tài liệu tham khảo

Wittenhagen, 2003, Impact of disease-related mitochondrial mutations on tRNA structure and function, Trends Biochem. Sci., 28, 605, 10.1016/j.tibs.2003.09.006 Coulbault, 2005, A novel mutation in the mitochondrial tRNAAsn gene associated with a lethal disease, Biochem. Biophys. Res. Commun., 329, 1152, 10.1016/j.bbrc.2005.02.083 Agris, 1996, The importance of being modified: Roles of modified nucleosides and Mg2+ in RNA structure and function, vol. 53, 79 Nobles, 2001, Highly conserved modified nucleosides influence Mg2+-dependent tRNA folding, Nucl. Acids Res., 30, 4751, 10.1093/nar/gkf595 Sprinzl, 2005, Compilation of tRNA sequences and sequences of tRNA genes, Nucl. Acids Res., 33, D139, 10.1093/nar/gki012 Barrell, 1974, Transfer RNA biosynthesis: the nucleotide sequence of a precursor to serine and proline transfer RNAs, Proc. Natl Acad. Sci. USA, 71, 413, 10.1073/pnas.71.2.413 Helm, 1998, The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA, Nucl. Acids Res., 26, 1636, 10.1093/nar/26.7.1636 Helm, 1999, A Watson-Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys, Biochemistry, 38, 13338, 10.1021/bi991061g Rainaldi, 2003, PLMItRNA, a database on the heterogeneous genetic origin of mitochondrial tRNA genes and tRNAs in photosynthetic eukaryotes, Nucl. Acids Res., 31, 436, 10.1093/nar/gkg080 Onoa, 2004, RNA folding and unfolding, Curr. Opin. Struct. Biol., 14, 374, 10.1016/j.sbi.2004.04.001 Thirumalai, 2001, Early events in RNA Folding, Annu. Rev. Phys. Chem., 52, 751, 10.1146/annurev.physchem.52.1.751 Misra, 2002, The linkage between magnesium binding and RNA folding, J. Mol. Biol., 317, 507, 10.1006/jmbi.2002.5422 Shi, 2000, The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited, RNA, 6, 1091, 10.1017/S1355838200000364 Serebrov, 2001, Mg2+ induced tRNA folding, Biochemistry, 40, 6688, 10.1021/bi002241p Sakurai, 2005, Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm, Nucl. Acids Res., 33, 1653, 10.1093/nar/gki309 Moriya, 1994, A novel modified nucleoside found at the first position of the anticodon of methionine tRNA from bovine liver mitochondria, Biochemistry, 33, 2234, 10.1021/bi00174a033 Larkin, 2002, Identification of essential domains for Escherichia coli tRNALeu aminoacylation and amino acid editing using minimalist RNA molecules, Nucl. Acids Res., 30, 2103, 10.1093/nar/30.10.2103 Wittenhagen, 2002, Dimerization of a pathogenic human mitochondrial tRNA, Nature Struct. Biol., 9, 586 Behlen, 1992, An ultraviolet light-induced crosslink in yeast tRNAPhe, Nucl. Acids Res., 20, 4055, 10.1093/nar/20.15.4055 Montero, 2000, Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion, Nature Cell Biol., 2, 57, 10.1038/35000001 Clark, 1997, CD, absorption and thermodynamic analysis of repeating dinucleotide DNA, RNA and hybrid duplexes [d/r(AC)]12·[d/r(GT/U)]12 and the influence of phosphorothioate substitution, Nucl. Acids Res., 25, 4098, 10.1093/nar/25.20.4098 Agris, 1996, Ribosome-independent anticodon to codon binding assessed by circular dichroism: roles of base modifications, Mg2+ and 2′OH, Biospectroscopy, 2, 205, 10.1002/(SICI)1520-6343(1996)2:4<205::AID-BSPY1>3.0.CO;2-5 Sosnick, 2000, Application of circular dichroism to study RNA folding transitions, Methods Enzymol., 317, 393, 10.1016/S0076-6879(00)17026-0 Yarian, 1999, Structural and functional roles of the N1- and N3-protons of Ψ at tRNA's position 39, Nucl. Acids Res., 27, 3543, 10.1093/nar/27.17.3543 Agris, 2004, Decoding the genome, a modified view, Nucl. Acids Res., 32, 223, 10.1093/nar/gkh185 Koshlap, 1999, A distinctive RNA fold: the solution structure of an analog of the yeast tRNAPhe TΨC domain, Biochemistry, 38, 8647, 10.1021/bi990118w Sengupta, 2000, Modified constructs of tRNA's TΨC-domain to probe substrate conformational requirements of m1A58 and m5U54-tRNA methyltransferases, Nucl. Acids Res., 28, 1374, 10.1093/nar/28.6.1374 Gale, 1996, Evidence that specificity of microhelix charging by a class I tRNA synthetase occurs in the transition state of catalysis, Biochemistry, 35, 608, 10.1021/bi9520904 Sugiura, 2000, The 2.0 A crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules, Structure, 8, 197, 10.1016/S0969-2126(00)00095-2 Senger, 1996, Yeast tRNA(Met) recognition by methionyl-tRNA synthetase requires determinants from the primary, secondary and tertiary structure: a review, Biochimie, 78, 597, 10.1016/S0300-9084(96)80006-X Spencer, 2004, Characterization of the human mitochondrial methionyl-tRNA synthetase, Biochemistry, 43, 9743, 10.1021/bi049639w Hsu, 2006, Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles, J. Biol. Chem., 281, 23075, 10.1074/jbc.M601606200 Helm, 2000, Search for characteristic structural features of mammalian mito-tRNAs, RNA, 6, 1356, 10.1017/S1355838200001047 Shelton, 2001, Altering the intermediate in the equilibrium folding of unmodified yeast tRNAPhe with monovalent and divalent cations, Biochemistry, 40, 3629, 10.1021/bi002646+ Heilman-Miller, 2001, Role of counterion condensation in folding of the Tetrahymena ribozyme. I. Equilibrium stabilization by cations, J. Mol. Biol., 306, 1157, 10.1006/jmbi.2001.4437 Pyle, 2002, Metal ions in the structure and function of RNA, J. Biol. Inorg. Chem., 7, 679, 10.1007/s00775-002-0387-6 Russell, 2000, Small angle X-ray scattering reveals a compact intermediate in RNA folding, Nature Struct. Biol., 7, 367, 10.1038/80691 Buchmueller, 2000, A collapsed non-native RNA folding state, Nature Struct. Biol., 7, 362, 10.1038/75125 Murthy, 2000, Is counterion delocalization responsible for collapse in RNA folding?, Biochemistry, 39, 14365, 10.1021/bi001820r Woodson, 2000, Compact but disordered states of RNA, Nature Struct. Biol., 7, 349, 10.1038/75106 Wilson, 2001, Importance of specific nucleotides in the folding of the natural form of the hairpin ribozyme, Biochemistry, 40, 2291, 10.1021/bi002644p Woodson, 2001, Folding mechanisms of group I ribozymes: role of stability and contact order, Biochem. Soc. Trans., 30, 1166, 10.1042/bst0301166 Trieber, 2001, Beyond kinetic traps in RNA folding, Curr. Opin. Struct. Biol., 11, 309, 10.1016/S0959-440X(00)00206-2 Tinoco, 1999, How RNA folds, J. Mol. Biol., 293, 271, 10.1006/jmbi.1999.3001 Russell, 2002, Exploring the folding landscape of a structured RNA, Proc. Natl Acad. Sci. USA, 99, 155, 10.1073/pnas.221593598 Schultes, 2005, Compact and ordered collapse of randomly generated RNA sequences, Nature Struct. Mol. Biol., 12, 1130, 10.1038/nsmb1014 Stuart, 2003, Naturally occurring modification restricts the anticodon domain conformational space of tRNAPhe, J. Mol. Biol., 334, 901, 10.1016/j.jmb.2003.09.058 Cabello-Villegas, 2002, Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNAPhe, J. Mol. Biol., 319, 1015, 10.1016/S0022-2836(02)00382-0 Buchmueller, 2000, A collapsed non-native RNA folding state, Nature Struct. Biol., 7, 362, 10.1038/75125 Schroeder, 2002, RNA folding in vivo, Curr. Opin. Struct. Biol., 12, 296, 10.1016/S0959-440X(02)00325-1 Kramer, 1981, Secondary structure formation during RNA synthesis, Nucl. Acids Res., 9, 5109, 10.1093/nar/9.19.5109 Pan, 2006, RNA folding during transcription, Annu. Rev.Biophys. Biomol. Struct., 35, 161, 10.1146/annurev.biophys.35.040405.102053 Boyle, 1980, Sequential folding of transfer RNA. A nuclear magnetic resonance study of successively longer tRNA fragments with a common 5′ end, J. Mol. Biol., 139, 601, 10.1016/0022-2836(80)90051-0 Adilakshmi, 2005, Protein-independent folding pathway of the 16 S rRNA 5′ domain, J. Mol. Biol., 351, 508, 10.1016/j.jmb.2005.06.020 Sosnick, 2003, RNA folding: models and perspectives, Curr. Opin. Struct. Biol., 13, 309, 10.1016/S0959-440X(03)00066-6 Newby, 2001, A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture, RNA, 7, 833, 10.1017/S1355838201002308 Björk, 1995, Biosynthesis and function of modified nucleosides, 165 Schroeder, 2002, RNA folding in vivo, Curr. Opin. Struct. Biol., 12, 296, 10.1016/S0959-440X(02)00325-1 Zheng, 2001, Formation of a GNRA tetraloop in P5abc can disrupt an interdomain interaction in the Tetrahymena group I ribozyme, Proc. Natl Acad. Sci. USA, 98, 3695, 10.1073/pnas.051608598 Silverman, 1999, Quantifying the energetic interplay of RNA tertiary and secondary structure interactions, RNA, 5, 1555, 10.1017/S1355838299991823 Durant, 1999, Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base-pair and by pseudouridine, J. Mol. Biol., 285, 115, 10.1006/jmbi.1998.2297 Cabello-Villegas, 2005, Solution structure of psi32-modified anticodon stem-loop of Escherichia coli tRNAPhe, Nucl. Acids Res., 33, 6961, 10.1093/nar/gki1004 Meroueh, 2000, Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA, Nucl. Acids Res., 28, 2075, 10.1093/nar/28.10.2075 Sumita, 2005, Effects of nucleotide substitution and modification on the stability and structure of helix 69 from 28S rRNA, RNA, 11, 1420, 10.1261/rna.2320605 Yarian, 2000, Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNALysUUU species, Biochemistry, 39, 13390, 10.1021/bi001302g Guenther, 1988, Purification of transfer RNA species by single-step ion-exchange HPLC, J. Chromatog., 444, 79, 10.1016/S0021-9673(01)94010-5 Sampson, 1988, Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro, Proc. Natl Acad. Sci. USA, 85, 1033, 10.1073/pnas.85.4.1033 Milligan, 1987, Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates, Nucl. Acids Res., 15, 8783, 10.1093/nar/15.21.8783 Puglisi, 1989, Absorbance melting curves of RNA, Methods Enzymol., 180, 304, 10.1016/0076-6879(89)80108-9 McDowell, 1996, Investigation of the structural basis for thermodynamic stabilities of tandem GU mismatches: solution structure of (rGAGGUCUC)2 by two-dimensional NMR and simulated annealing, Biochemistry, 35, 14077, 10.1021/bi9615710 Guenther, 1992, Magnesium-induced conformational transition in a DNA analog of the yeast tRNAPhe anticodon stem-loop, Biochemistry, 31, 11004, 10.1021/bi00160a009 Dao, 1992, The role of 5-methylcytidine in the anticodon arm of yeast tRNAPhe: site-specific Mg2+ binding and coupled conformational transition in DNA analogs, Biochemistry, 31, 11012, 10.1021/bi00160a010 Piotto, 1992, Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions, J. Biomol. NMR, 2, 661, 10.1007/BF02192855 Rho, 2000, The bI4 group I intron binds directly to both its protein splicing partners, a tRNA synthetase and maturase, to facilitate RNA splicing activity, RNA, 6, 1882, 10.1017/S1355838200001254 Martinis, 1977, Non-standard amino acid recognition by Escherichia coli leucyl-tRNA synthetase, Nucl. Acids Symp. Ser., 26, 125 Lincecum, 2003, Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase, Mol. Cell., 11, 951, 10.1016/S1097-2765(03)00098-4 Mursinna, 2001, A conserved threonine within Escherichia coli leucyl-tRNA synthetase prevents hydrolytic editing of leucyl-tRNALeu, Biochemistry, 40, 5376, 10.1021/bi002915w