A Contemporary and Comprehensive Survey on Streaming Tensor Decomposition

IEEE Transactions on Knowledge and Data Engineering - Tập 35 Số 11 - Trang 10897-10921 - 2023
Le Trung Thanh1,2, Karim Abed-Meraim1,3, Nguyen Linh Trung2, Adel Hafiane1
1INSA-CVL, PRISME, University of Orléans, Orléans, France
2VNU University of Engineering and Technology, Hanoi, Vietnam
3IUF, Institut Universitaire de France, Paris, France

Tóm tắt

Tensor decomposition has been demonstrated to be successful in a wide range of applications, from neuroscience and wireless communications to social networks. In an online setting, factorizing tensors derived from multidimensional data streams is however nontrivial due to several inherent problems of real-time stream processing. In recent years, many research efforts have been dedicated to developing online techniques for decomposing such tensors, resulting in significant advances in streaming tensor decomposition or tensor tracking. This topic is emerging and enriches the literature on tensor decomposition, particularly from the data stream analystics perspective. Thus, it is imperative to carry out an overview of tensor tracking to help researchers and practitioners understand its developments and achievements, summarise the current trends and advances, and identify challenging problems. In this article, we provide a contemporary and comprehensive survey on different types of tensor tracking techniques. We particularly categorize the state-of-the-art methods into three main groups: streaming CP decompositions, streaming Tucker decompositions, and streaming decompositions under other tensor formats (i.e., tensor-train, t-SVD, and BTD). In each group, we further divide the existing algorithms into sub-categories based on their main optimization framework and model architectures. Finally, we present several applications, research challenges, open problems, and potential directions of tensor tracking in the future.

Từ khóa

#BTD #CP #data stream #low-rank tensor approximation #online optimization #tensor decomposition #tensor-train #t-SVD #tucker

Tài liệu tham khảo

10.1007/978-3-030-19274-7_5 10.1016/j.neucom.2018.11.030 10.1137/1.9781611976236.65 rambhatla, 2020, Provable online CP/PARAFAC decomposition of a structured tensor via dictionary learning, Proc Int Conf Neural Inf Process, 1 chinh, 2016, Adaptive PARAFAC decomposition for third-order tensor completion, Proc IEEE 6th Int Conf Commun Electron, 297 10.1109/ICDM.2018.00200 10.1109/ICDM.2018.00025 10.1109/TSP.2013.2278516 10.1137/1.9781611975321.10 10.1109/TPAMI.2015.2392756 10.1016/j.neucom.2017.04.058 10.1109/IPDPS.2015.27 li, 2021, SGD-Tucker: A novel stochastic optimization strategy for parallel sparse tucker decomposition, IEEE Trans Parallel Distrib Syst, 32, 1828 10.23919/EUSIPCO.2017.8081290 foster, 2020, Designing and Building Parallel Programs Concepts and Tools for Parallel Software Engineering dung, 2017, Second-order optimization based adaptive PARAFAC decomposition of three-way tensors, Digit Signal Process, 63, 100, 10.1016/j.dsp.2017.01.006 choi, 2014, DFacTo: Distributed factorization of tensors, Proc Int Conf Neural Inf Process, 1 mahoney, 2011, Randomized algorithms for matrices and data, Found Trends Mach Learn, 3, 123 10.1109/ICACI.2018.8377495 10.1016/j.image.2018.03.017 10.1137/21M1391444 10.1109/TSP.2009.2016885 10.1016/j.knosys.2015.07.013 10.1109/TSP.2015.2417491 10.1109/ICASSP.2016.7472876 10.1137/06066518X 10.1109/MCS.2021.3122268 10.1137/070690730 al daas, 2022, Parallel algorithms for tensor train arithmetic, SIAM J Sci Comput, 44, 25, 10.1137/20M1387158 10.1137/S0895479898346995 10.1145/2939672.2939763 10.1088/1741-2552/ab5247 cohen, 2016, Convolutional rectifier networks as generalized tensor decompositions, Proc Int Conf Mach Learn, 955 10.1137/070690729 10.1007/s10589-020-00167-1 10.1109/JPROC.2015.2455028 10.1007/BF02289464 harshman, 1970, Foundations of the PARAFAC procedure: Models and conditions for an explanatory multimodal factor analysis, UCLA Work Papers Phonetics, 16, 1 10.1016/j.laa.2010.09.020 10.1137/090752286 10.1007/s11263-007-0075-7 10.1007/s13042-011-0017-0 10.1109/JPROC.2021.3074329 10.1002/widm.1133 10.1109/TKDE.2021.3135715 10.1109/JPROC.2015.2474704 10.1016/j.knosys.2016.01.027 10.1561/2200000067 10.1145/2915921 10.1002/widm.1 10.1145/2037676.2037686 10.1109/MSP.2022.3163870 10.1145/3097983.3098087 10.1016/j.jneumeth.2015.03.018 10.3390/s21124021 10.1109/MSP.2013.2297439 10.3390/s19235076 10.1049/iet-spr.2020.0373 10.1109/ACCESS.2019.2949814 10.1109/TKDE.2019.2915231 10.1109/97.410547 10.1002/cem.931 10.1109/TITS.2015.2513411 10.1016/j.chemolab.2022.104550 10.1002/cem.776 10.1016/j.compchemeng.2020.107099 10.1109/MSP.2020.3003544 10.1109/ACCESS.2021.3058103 10.1002/cem.1236 10.1016/j.sigpro.2005.12.016 10.1002/gamm.201310004 10.1007/s40314-022-02107-7 10.1561/2200000059 10.1109/JSTSP.2010.2048070 10.1109/MSP.2014.2329429 10.1137/110841229 10.1109/MSP.2014.2298533 10.1145/2512329 10.1109/JPROC.2018.2848209 akidau, 2018, Streaming Systems The What Where When and How of Large-Scale Data Processing 10.1002/cem.1223 thanh, 2021, Robust subspace tracking algorithms in signal processing: A brief survey, Review Elec Commun, 11, 16 hanggi, 2007, Colored noise in dynamical systems, Adv Chem Phys, 89, 239 10.1109/TWC.2020.2966622 10.1109/TCSI.2017.2667705 bifet, 2010, Adaptive Stream Mining Pattern Learning and Mining from Evolving Data Streams 10.1109/TSP.2015.2504349 10.1007/s10462-020-09916-4 10.1145/1921632.1921636 10.1002/widm.1405 10.1109/TIP.2018.2865684 10.1186/s40537-019-0210-7 min, 2008, Inferring segmented dense motion layers using 5D tensor voting, IEEE Trans Pattern Anal Mach Intell, 30, 1589, 10.1109/TPAMI.2007.70802 fang, 2021, Bayesian streaming sparse Tucker decomposition, Proc Conf Uncertainty Artif Intell, 558 10.1109/TCSVT.2022.3190818 10.1109/JSTSP.2021.3058846 10.1109/ICCV.2017.35 10.1109/JSTSP.2021.3061937 10.3390/sym14010113 10.1109/ICCVW.2015.125 10.1109/TSP.2010.2058802 10.1145/3447548.3467290 10.1109/ACCESS.2022.3186364 10.1109/TKDE.2008.112 10.1016/S0169-7439(97)00032-4 10.1109/MSP.2010.936030 10.1137/07070111X traore, 2019, Singleshot: A scalable Tucker tensor decomposition, Proc Int Conf Neural Inf Process, 1 10.1109/TBME.2016.2553960 10.1016/j.neucom.2019.08.053 10.3389/fnins.2022.861402 pan, 2020, Streaming nonlinear Bayesian tensor decomposition, Proc Conf Uncertainty Artif Intell, 490 10.1109/MC.2008.431 10.1137/19M1257718 10.1037/0033-295X.111.4.931 10.1016/j.tics.2011.03.006 10.1109/ICDM.2018.00180 madhav, 2018, Inductive framework for multi-aspect streaming tensor completion with side information, Proc Int Conf Inf Knowl Manage, 307 10.1109/TBDATA.2018.2824303 10.1145/1541880.1541882 kasai, 2016, Low-rank tensor completion: A Riemannian manifold preconditioning approach, Proc Int Conf Mach Learn, 1012 10.1109/TSP.2017.8076023 10.1109/HPEC.2016.7761607 trung, 2018, A non-linear tensor tracking algorithm for analysis of incomplete multi-channel EEG data, Proc 12th Int Symp Med Inf Commun Technol, 1 10.1109/TCSS.2018.2813320 10.1109/EMBC.2015.7319226 10.1109/TSIPN.2017.2668146 10.1109/10.40805 10.1109/ICDMW.2014.176 10.1109/TITS.2019.2941649 10.1007/s11263-010-0399-6 10.1109/ICCWorkshops53468.2022.9814591 yu, 2015, Accelerated online low rank tensor learning for multivariate spatiotemporal streams, Proc Int Conf Mach Learn, 238 10.1109/TVCG.2017.2744419 10.1109/TETC.2014.2330516 10.1007/s10618-018-0560-3 10.1007/s10115-014-0733-3 10.1109/TNSM.2016.2598788 10.1109/ICCV.2007.4408950 10.1145/1409620.1409621 10.1109/ACCESS.2019.2955134 10.1145/1150402.1150445 10.1007/s10543-013-0455-z 10.1145/3532189 10.23919/APSIPAASC55919.2022.9980029 10.24963/ijcai.2019/442 10.1109/TCSII.2018.2862900 10.1145/3097983.3098007 10.1109/TNNLS.2018.2860964 10.1109/ICDE51399.2021.00098 10.1109/TSUSC.2018.2881439 10.2478/jdis-2020-0010 10.1016/j.patcog.2011.01.004 10.1007/978-3-030-74386-4 10.1109/TSP.2017.2690524 fang, 2021, Streaming Bayesian deep tensor factorization, Proc Int Conf Mach Learn, 3133 thanh, 2022, Streaming tensor-train decomposition with missing data 10.1137/20M1319097 10.23919/EUSIPCO55093.2022.9909702 boyen, 1998, Tractable inference for complex stochastic processes, Proc 14th Conf Uncertainty Artif Intell, 33 broderick, 2013, Streaming variational Bayes, Proc Int Conf Neural Inf Process, 1 thanh, 2020, Adaptive algorithms for tracking tensor-train decomposition of streaming tensors, Proc 28th Eur Signal Process Conf, 995 10.2307/2347162 10.1109/ALLERTON.2010.5706976 harshman, 1972, PARAFAC2: Mathematical and technical notes, UCLA Work Papers Phonetics, 22 10.1109/ICASSP.2016.7472114 10.1109/78.575696 10.1109/TSP.2022.3164837 thanh, 2022, Tracking online low-rank approximations of incomplete high-order streaming tensors, Patterns 10.1109/DSAA49011.2020.00029 10.1109/ICASSP39728.2021.9413554 10.1109/IEEECONF53345.2021.9723160 lyu, 2022, Online nonnegative CP-dictionary learning for Markovian data, J Mach Learn Res, 23, 1 10.1109/TBDATA.2018.2867485 10.1109/TSP.2022.3201640 10.1109/TII.2020.2967768 10.1109/ICDE51399.2021.00076 10.1109/TPAMI.2016.2539944 10.1016/j.eswa.2017.08.039 10.1145/3459637.3482048 smeulders, 2014, Visual tracking: An experimental survey, IEEE Trans Pattern Anal Mach Intell, 36, 1442, 10.1109/TPAMI.2013.230 dongjin, 2021, Robust factorization of real-world tensor streams with patterns, missing values, and outliers, Proc IEEE Int Conf Data Eng, 840 10.1016/j.neucom.2011.05.006