A Conformally Invariant Gap Theorem in Yang–Mills Theory
Tóm tắt
Từ khóa
Tài liệu tham khảo
Atiyah M., Drinfeld V., Hitchin N., Manin Y.: Construction of instantons. Phys. Lett. 65, 185–187 (1978)
Aubin T.: Equations différentielles non linéaires et Probleme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)
Belavin A., Polyakov A., Schwarz A., Tyupkin Y.: Pseudoparticle solutions of the Yang–Mills equations. Phys. Lett. 59B, 8–87 (1975)
Besse, A.L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 10, pp. xii+510. Springer, Berlin (1987)
Bourguignon, J.P.: Formules de Weitzenböck en dimension 4, In: Géometrie Riemannienne de dimension 4. CEDIC, Paris (1981)
Bourguignon J.P., Lawson H.: Stability and isolation phenomena for Yang–Mills fields. Commun. Math. Phys. 79, 189–230 (1981)
Chen, Y-M., Shen, C-L.: Evolution of Yang–Mills connections, Differential geometry (Shanghair, 1991), pp. 33–41. World Sci. Publ., River Edge (1993)
Dodziuk J., Min-Oo M.: An L 2-isolation theorem for Yang–Mills fields over complete manifolds. Compos. Math. 47, 165–169 (1982)
Donaldson, S.K.: An application of gauge theory to four-dimensional topology. J. Diff. Geom. 18(2), 279-315
Donaldson, S.K., Kronheimer, P.B.: The geometry of four-manifolds, Oxford Mathematical Monographs, (1990)
Feehan P.: Energy gap for Yang–Mills connections, I: Four-dimensional closed Riemannian manifolds. Adv. Math. 296, 55–84 (2016)
Feehan P. Global existence and convergence of solutions to gradient systems and applications to Yang–Mills gradient flow, arXiv:1409.1525
Gerhardt C.: An energy gap theorem for Yang–Mills connections. Commun. Math. Phys. 298, 515–522 (2010)
Gursky M.J.: Four-manifolds with $${\delta W^{+} = 0}$$ and Einstein constants of the sphere. Math. Ann. 318(3), 417–431 (2000)
Gursky M.J., LeBrun C.: Yamabe invariants and spin-c structures. Geom. Funct. Anal. 8(6), 965–977 (1998)
Gursky M.J., LeBrun C.: On Einstein manifolds of positive sectional curvature. Ann. Global Anal. Geom. 17(4), 315–328 (1999)
Kozono H., Maeda Y., Naito H.: Global solution for the Yang–Mills gradient flow on 4-manifolds. Nagoya Math. J. 139, 93–128 (1998)
LeBrun C.: Ricci curvature, minimal volumes, and Seiberg–Witten theory. Invent. Math. 145(2), 279–316 (2001)
Min-Oo An L 2-isolation theorem for Yang–Mills fields. Comp. Math. 47, Fasc. 2, 153-163 (1982).
Parker T.: Non-minimal Yang–Mills fields and dynamics Invent. Math. 107(2), 397–420 (1992)
Parker T.: Gauge theories on four-dimensional Riemannian manifolds. Commun. Math. Phys. 85, 563–602 (1982)
Råde, J.: Decay estimates for Yang–Mills fields: two new proofs Global analysis in modern mathematics (Orono, ME, 1991) 91–105, Publish or Perish, Houston, TX (1993)
Råde J.: On the Yang–Mills heat equation in two and three dimensions. J. Reine Angew. Math. 431, 123–163 (1992)
Sadun L., Segert J.: Non-self-dual Yang–Mills connections with quadropole symmetry. Commun. Math. Phys. 145, 363–391 (1992)
Schlatter A.: Long-time behaviour of the Yang–Mills flow in four dimensions. Ann. Glob. Anal. Geom. 15, 1–25 (1997)
Shen C.L.: The gap phenomena of Yang–Mills fields over the complete manifold. Math. Z. 180, 69–77 (1982)
Sibner L.M., R.J. Sibner, K. Uhlenbeck, Solutions to Yang–Mills equations that are not self-dual, Proc. Natl. Acad. Sci. USA. 86, 8610–8613 (1989)
Simon L.: Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. Math. 2(118), 525–571 (1983)
Stein E.M., Weiss G.: Introduction to Fourier analysis on Euclidean spaces, Princeton Math., Series 32. Princeton University Press, Princeton, NJ (1971)
Struwe M. (1994) The Yang–Mills flow in four dimensions. Calc. Var. 2, 123–150