Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh Giá Toàn Diện Về Phân Tích Và Triển Khai Các Phương Pháp Khử Sương Ảnh Gần Đây
Tóm tắt
Các hình ảnh được thu thập trong điều kiện thời tiết kém (sương mù, mưa, khói, ẩm, v.v.) thường bị suy giảm nghiêm trọng. Trong không khí, có hai loại hạt: hạt khô (bụi, khói, v.v.) và hạt ướt (giọt nước, mưa, v.v.). Do sự tán xạ và hấp thụ của các hạt này, nhiều hiệu ứng bất lợi khác nhau, bao gồm giảm độ rõ nét và tương phản, méo màu, v.v. được tạo ra trong hình ảnh. Những hình ảnh bị suy giảm này không thể chấp nhận được cho nhiều ứng dụng thị giác máy tính như giao thông thông minh, giám sát video, dự đoán thời tiết, cảm biến từ xa, v.v. Nhiệm vụ thị giác máy tính liên quan đến việc giảm thiểu hiệu ứng này được gọi là khử sương ảnh. Một hình ảnh đầu vào chất lượng cao (không có sương mù) là cần thiết để đảm bảo sự chính xác của các ứng dụng này, được cung cấp bởi các phương pháp khử sương ảnh. Hiệu ứng sương mù trong hình ảnh được thu thập phụ thuộc vào khoảng cách từ người quan sát đến cảnh vật. Bên cạnh đó, sự tán xạ của các hạt khuếch tán thêm nhiễu phi tuyến và phụ thuộc vào dữ liệu vào hình ảnh được thu thập. Khử sương ảnh đơn lẻ sử dụng mô hình vật lý của việc hình thành hình ảnh có sương mù, trong đó việc ước lượng độ sâu hoặc độ truyền là yếu tố quan trọng để thu được hình ảnh không có sương mù. Bài báo tổng quan này phân nhóm các phương pháp khử sương gần đây thành các loại khác nhau và giải thích các phương pháp khử sương phổ biến của mỗi loại. Phân tích theo loại này của các phương pháp khử sương cho thấy rằng các phương pháp học sâu và các phương pháp phục hồi dựa trên các thông tin tiền giả thuyết đã thu hút sự chú ý của các nhà nghiên cứu trong những năm gần đây trong việc giải quyết hai vấn đề thách thức của khử sương ảnh: sương dày và sương không đồng nhất. Ngoài ra, gần đây, các phương pháp dựa trên triển khai phần cứng đã được giới thiệu để hỗ trợ các hệ thống giao thông thông minh. Bài báo này cung cấp kiến thức sâu rộng về lĩnh vực này; các tiến bộ đã đạt được cho đến nay và so sánh hiệu suất (cả định tính và định lượng) của các công trình gần đây. Nó bao gồm mô tả chi tiết về các phương pháp khử sương, động lực, các bộ dữ liệu phổ biến và thách thức được sử dụng để kiểm tra, các chỉ số được sử dụng để đánh giá và các vấn đề/thách thức trong lĩnh vực này từ một góc nhìn mới. Bài báo này sẽ hữu ích cho tất cả các nhà nghiên cứu từ người mới vào nghề đến những người có kinh nghiệm cao trong lĩnh vực này. Nó cũng gợi ý những khoảng trống nghiên cứu trong lĩnh vực này, nơi các phương pháp gần đây còn thiếu.
Từ khóa
Tài liệu tham khảo
Kumar R, Kaushik BK, Balasubramanian R (2017) FPGA implementation of image dehazing algorithm for real time applications. In: Proc SPIE 10396, applications of digital image processing XL. https://doi.org/10.1117/12.2274682
Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48:233–254
Li Y, You S, Brown MS, Tan RT (2017) Haze visibility enhancement: A Survey and quantitative benchmarking. Comput Vis Image Underst 165:1–16
Wang W, Yuan X (2017) Recent advances in image dehazing. IEEE/CAA J Automat Sin 4(3):410–436. https://doi.org/10.1109/JAS.2017.7510532
Singh D, Kumar VA (2019) Comprehensive review of computational dehazing techniques. Arch Comput Methods Eng 26:1395–1413. https://doi.org/10.1007/s11831-018-9294-z
Babu GH, Venkatram N (2020) A survey on analysis and implementation of state-of-the-art haze removal techniques. J Visu Commun Image Represent 72:102912. https://doi.org/10.1016/j.jvcir.2020.102912
Das B, Ebenezer JP, Mukhopadhyay SA (2020) Comparative study of single image fog removal methods. Vis Comput. https://doi.org/10.1007/s00371-020-02010-4
https://www.ndtv.com/topic/fog-accident
Min X et al (2019) Quality evaluation of image dehazing methods using synthetic hazy images. IEEE Trans Multimedia 21(9):2319–2333. https://doi.org/10.1109/TMM.2019.2902097
Shen L, Zhao Y, Peng Q, Chan JC, Kong SG (2019) An iterative image dehazing method with polarization. IEEE Trans Multimedia 21(5):1093–1107. https://doi.org/10.1109/TMM.2018.2871955
Ancuti C, Ancuti CO, De Vleeschouwer C, Bovik AC (2020) Day and night-time dehazing by local airlight estimation. IEEE Trans Image Process 29:6264–6275. https://doi.org/10.1109/TIP.2020.2988203
Chen W, Ding J, Kuo S (2019) PMS-net: Robust haze removal based on patch map for single images. In: 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR), Long Beach, CA, USA, pp 11673–11681. https://doi.org/10.1109/CVPR.2019.01195.
Galdran A (2018) Image dehazing by artificial multiple-exposure image fusion. Signal Process 149:135–147
Fu X, Wang J, Zeng D, Huang Y, Ding X (2015) Remote sensing image enhancement using regularized-histogram equalization and dct. IEEE Geosci Remote Sens Lett 12(11):2301–2305
Chen BH, Huang SC, Ye JH (2015) Hazy image restoration by bi-histogram modification. ACM Tran Intell Syst Technol TIST 6(4):50
He S, Yang Q, Lau RW, Yang MH (2016) Fast weighted histograms for bilateral filtering and nearest neighbor searching. IEEE Trans Circ Syst Video Technol 26(5):891–902
Mi Z, Zhou H, Zheng Y, Wang M (2016) Single image dehazing via multi-scale gradient domain contrast enhancement. IET Image Process 10(3):206–214
Zheng L, Shi H, Gu M (2017) Infrared traffic image enhancement algorithm based on dark channel prior and gamma correction. Mod Phys Lett B 31:1740044
Gao Y, Chen H, Li H, Zhang W (2017) Single image dehazing using local linear fusion. IET Image Proc 12:637–643
Ju M, Ding C, Zhang D, Guo YJ (2018) Gamma-correction-based visibility restoration for single hazy images. IEEE Signal Process Lett 25(7):1084–1088. https://doi.org/10.1109/LSP.2018.2839580
Wang J, Lu K, Xue J, He N, Shao L (2018) Single image dehazing based on the physical model and MSRCR algorithm. IEEE Trans Circ Syst Video Technol 28(9):2190–2199. https://doi.org/10.1109/TCSVT.2017.2728822
Liu X, Zhang H, Cheung Y, You X, Tang YY (2017) Efficient single image dehazing and denoising: an efficient multi-scale correlated wavelet approach. Comput Vis Image Underst 162:23–33
Yang H, Yang CH, Tsai YJ (2020) Y-net: multi-scale feature aggregation network with wavelet structure similarity loss function for single image dehazing. In: ICASSP 2020–2020 IEEE international conference on acoustics, speech and signal processing (ICASSP), Barcelona, Spain, pp 2628–2632. https://doi.org/10.1109/ICASSP40776.2020.9053920.
He J, Xing FZ, Yang R, Zhang C (2019) Fast single image dehazing via multilevel wavelet transform based optimization. arXiv:1904.08573
Singh D, Garg D, Singh Pannu H (2017) Efficient landsat image fusion using fuzzy and stationary discrete wavelet transform. Imaging Sci J 65(2):108–114
Liu C, Zhao J, Shen Y et al (2016) Texture filtering based physically plausible image dehazing. Vis Comput 32:911–920. https://doi.org/10.1007/s00371-016-1259-3
Singh D, Kumar V (2019) Image dehazing using Moore neighborhood-based gradient profile prior. Signal Process Image Commun 70:131–144
Tarel JP, Hautiere N, Cord A, Gruyer D, Halmaoui H (2010) Improved visibility of road scene images under heterogeneous fog. In: Proc IEEE Intell Veh Symp, pp 478–485
Tarel JP, Hautiere N (2009) Fast visibility restoration from a single color or gray level image. In: Proceedings of the IEEE 12th international conference on computer vision. IEEE, Kyoto, Japan, pp 2201–2208
Wang W, Yuan X, Wu X, Liu Y (2017) Fast image dehazing method based on linear transformation. IEEE Trans Multimedia 19(6):1142–1155. https://doi.org/10.1109/TMM.2017.2652069
Salazar-Colores S, Cabal-Yepez E, Ramos-Arreguin JM, Botella G, Ledesma-Carrillo LM, Ledesma S (2019) A fast image dehazing algorithm using morphological reconstruction. IEEE Trans Image Process 28(5):2357–2366. https://doi.org/10.1109/TIP.2018.2885490
Bi G, Ren J, Fu T, Nie T, Chen C, Zhang N (2017) Image dehazing based on accurate estimation of transmission in the atmospheric scattering model. IEEE Photon J 9(4):1–18. https://doi.org/10.1109/JPHOT.2017.2726107
Li Z, Zheng J (2018) Single image de-hazing using globally guided image filtering. IEEE Trans Image Process 27(1):442–450. https://doi.org/10.1109/TIP.2017.2750418
Fan X, Wang Y, Tang X, Gao R, Luo Z (2017) Two-layer Gaussian process regression with example selection for image dehazing. IEEE Trans Circuits Syst Video Technol 27(12):2505–2517. https://doi.org/10.1109/TCSVT.2016.2592328
Riaz I, Yu T, Rehman Y, Shin H (2016) Single image dehazing via reliability guided fusion. J Vis Commun Image Represent 40:85–97
Xiao J, Shen M, Lei J, Zhou J, Klette R, Sui HG (2020) Single image dehazing based on learning of haze layers. Neurocomputing 389:108–122
Jiang B, Meng H, Ma X et al (2018) Nighttime image Dehazing with modified models of color transfer and guided image filter. Multimed Tools Appl 77:3125–3141. https://doi.org/10.1007/s11042-017-4954-9
He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409
Li Z, Zheng J, Zhu Z, Yao W, Wu S (2015) Weighted guided image filtering. IEEE Trans Image Process 24(1):120–129
Singh D, Kumar V, Kaur M (2019) Single image dehazing using gradient channel prior. Appl Intell 49:4276–4293. https://doi.org/10.1007/s10489-019-01504-6
Nandal S, Kumar S (2019) Single image fog removal algorithm in spatial domain using fractional order anisotropic diffusion. Multimed Tools Appl 78:10717–10732. https://doi.org/10.1007/s11042-018-6576-2
Ancuti CO, Ancuti C (2013) Single image dehazing by multi-scale fusion. IEEE Trans Image Process 22(8):3271–3282
Vazquez-Corral J, Galdran A, Cyriac P et al (2020) A fast image dehazing method that does not introduce color artifacts. J Real-Time Image Proc 17:607–622. https://doi.org/10.1007/s11554-018-0816-6
Liu P, Horng S, Lin J, Li T (2019) Contrast in haze removal: configurable contrast enhancement model based on dark channel prior. IEEE Trans Image Process 28(5):2212–2227. https://doi.org/10.1109/TIP.2018.2823424
Baig N, Riaz MM, Ghafoor A, Siddiqui AM (2016) Image dehazing using quadtree decomposition and entropy-based contextual regularization. IEEE Signal Process Lett 23(6):853–857. https://doi.org/10.1109/LSP.2016.2559805
Yuan H, Liu C, Guo Z, Sun Z (2017) A region-wised medium transmission based image dehazing method. IEEE Access 5:1735–1742
Raikwar SC, Tapaswi S (2020) Lower bound on transmission using non-linear bounding function in single image dehazing. IEEE Trans Image Process 29:4832–4847. https://doi.org/10.1109/TIP.2020.2975909
Zhang S, He F, Ren W et al (2020) Joint learning of image detail and transmission map for single image dehazing. Vis Comput 36:305–316. https://doi.org/10.1007/s00371-018-1612-9
Meng G, Wang Y, Duan J, Xiang S, Pan C (2013) Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of the IEEE international conference on computer vision, pp 617–624
Cui T, Tian J, Wang E, Tang Y (2017) Single image dehazing by latent region-segmentation based transmission estimation and weighted L 1-norm regularization. IET Image Proc 11(2):145–154
Chen C, Do MN, Wang J (2016) Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In: European conference on computer vision. Springer, pp 576–591
Wang X, Ju M, Zhang D (2017) Image haze removal via multiscale fusion and total variation. J Syst Eng Electron 28(3):597–605. https://doi.org/10.21629/JSEE.2017.03.19
Liu Q, Gao X, He L, Lu W (2018) Single image dehazing with depth-aware non-local total variation regularization. IEEE Trans Image Process 27(10):5178–5191. https://doi.org/10.1109/TIP.2018.2849928
Wu Q, Zhang J, Ren W, Zuo W, Cao X (2020) Accurate transmission estimation for removing haze and noise from a single image. IEEE Trans Image Process 29:2583–2597. https://doi.org/10.1109/TIP.2019.2949392
Park J, Han DK, Ko H (2020) Fusion of heterogeneous adversarial networks for single image dehazing. IEEE Trans Image Process 29:4721–4732. https://doi.org/10.1109/TIP.2020.2975986
Zhu Z, Wei H, Hu G, Li Y, Qi G, Mazur N (2021) A novel fast single image dehazing algorithm based on artificial multiexposure image fusion. IEEE Trans Instrum Meas 70:1–23. https://doi.org/10.1109/TIM.2020.3024335
Yuan F, Zhou Y, Xia X, Shi J, Fang Y, Qian X (2020) Image dehazing based on a transmission fusion strategy by automatic image matting. Comput Vis Image Underst 194:102933
Ma Z, Wen J, Zhang C, Liu Q, Yan D (2016) An effective fusion defogging approach for single sea fog image. Neuro-computing 173:1257–1267
Son C, Zhang X (2018) Near-infrared fusion via color regularization for haze and color distortion removals. IEEE Trans Circuits Syst Video Technol 28(11):3111–3126. https://doi.org/10.1109/TCSVT.2017.2748150
Shibata T, Tanaka M, Okutomi M (2019) Unified image fusion framework with learning-based application-adaptive importance measure. IEEE Trans Comput Imaging 5(1):82–96. https://doi.org/10.1109/TCI.2018.2879021
Zhao D, Xu L, Yan Y, Chen J, Duan L-Y (2019) Multi-scale optimal fusion model for single image dehazing. Signal Process 74:253–265
Agrawal SC, Jalal AS (2021) A joint cumulative distribution function and gradient fusion-based method for dehazing of long shot hazy images. J Vis Commun Image Represent 77:103087
He K, Sun J, Tang X (2010) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353
Zhu Q, Mai J, Shao L et al (2015) A fast single image haze removal algorithm using color attenuation prior. TIP 24(11):3522–3533
Zhenfei Gu, Mingye Ju, Zhang D (2017) A single image dehazing method using average saturation prior. Math Probl Eng. https://doi.org/10.1155/2017/6851301
Berman D, Treibitz T, Avidan S (2020) Single image dehazing using haze-lines. IEEE Trans Pattern Anal Mach Intel 42(3):720–734. https://doi.org/10.1109/TPAMI.2018.2882478
Bui TM, Kim W (2018) Single image dehazing using color ellipsoid prior. IEEE Trans Image Process 27(2):999–1009. https://doi.org/10.1109/TIP.2017.2771158
Mei K, Jiang A, Li J, Li J, Wang M (2019) Progressive feature fusion network for realistic image dehazing. In: Asian conference on computer vision. https://doi.org/10.1007/978-3-030-20887-5_13
Salazar-Colores S, Ramos-Arreguín JM, Pedraza-Ortega JC et al (2019) Efficient single image dehazing by modifying the dark channel prior. J Image Video Proc 2019:66. https://doi.org/10.1186/s13640-019-0447-2
Zhang L, Wang S, Wang X (2018) Saliency-based dark channel prior model for single image haze removal. IET Image Process 12(6):1049–1055
Zhu M, He B, Wu Q (2018) Single image dehazing based on dark channel prior and energy minimization. IEEE Signal Process Lett 25(2):174–178. https://doi.org/10.1109/LSP.2017.2780886
Shiau Y, Yang H, Chen P, Chuang Y (2013) Hardware implementation of a fast and efficient haze removal method. IEEE Trans Circ Syst Video Technol 23(8):1369–1374. https://doi.org/10.1109/TCSVT.2013.2243650
Ren W, Liu S, Zhang H, Pan J, Cao X, Yang M-H (2016) Single image dehazing via multi-scale convolutional neural networks. In: ECCV, 2016
Cai B, Xu X, Jia K, Qing C, Tao D (2016) Dehazenet: an end-to-end system for single image haze removal. IEEE Trans Image Process 25(11):5187–5198
Li B, Peng X, Wang Z, Xu J, Feng D (2017) Aod-net: all-in-one dehazing network. In: Proceedings of the IEEE international conference on computer vision, pp 4770–4778
Engin D, Genc A, Ekenel HK (2018) Cycle-dehaze: enhanced CycleGAN for single image dehazing. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Salt Lake City, UT, pp 938–9388. https://doi.org/10.1109/CVPRW.2018.00127.
Ren W, Ma L, Zhang J, Pan J, Cao X, Liu W, Yang M-H (2018) Gated fusion network for single image dehazing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3253–3261
Liu Z, Xiao B, Alrabeiah M, Wang K, Chen J (2019) Single image dehazing with a generic model-agnostic convolutional neural network. IEEE Signal Process Lett 26(6):833–837
Singh A, Bhave A, Prasad DK (2020) Single image dehazing for a variety of haze scenarios using back projected pyramid network. In: European conference on computer vision workshops
Gandelsman Y, Shocher A, Irani M (2019) Double-DIP: unsupervised image decomposition via coupled deepimage-priors. In: CVPR
Li B, Gou Y, Liu JZ, Zhu H, Zhou JT, Peng X (2020) Zero-shot image dehazing. IEEE Trans Image Process 29:8457–8466. https://doi.org/10.1109/TIP.2020.3016134
Liu Y, Pan J, Ren J, Su Z (2019) Learning deep priors for image dehazing. In: Proceedings of the IEEE/CVF international conference on computer vision (ICCV), pp 2492–2500
Zhang H, Sindagi V, Patel VM (2020) Joint transmission map estimation and dehazing using deep networks. IEEE Trans Circ Syst Video Technol 30(7):1975–1986
Chen D, He M, Fan Q, Liao J, Zhang L, Hou D, Yuan L, Hua G (2019) Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE winter conference on applications of computer vision (WACV), pp 1375–1383
Zhang H, Sindagi V, Patel VM (2018) Multi-scale single image dehazing using perceptual pyramid deep network. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Salt Lake City, UT, pp 1015–101509. https://doi.org/10.1109/CVPRW.2018.00135.
Qin X, Wang Z, Bai Y, Xie X, Jia H (2019) Ffa-net: feature fusion attention network for single image dehazing. arXiv:1911.07559
Li L, Dong Y, Ren W, Pan J, Gao C, Sang N, Yang MH (2019) Semi-supervised image dehazing. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2019.2952690
Golts A, Freedman D, Elad M (2020) Unsupervised single image dehazing using dark channel prior loss. IEEE Trans Image Process 29:2692–2701. https://doi.org/10.1109/TIP.2019.2952032
Agrawal SC, Jalal AS (2022) Distortion-free image dehazing by superpixels and ensemble neural network. Vis Comput 38:781–796. https://doi.org/10.1007/s00371-020-02049-3
Yu M, Cherukuri V, Guo T, Monga V (2020) Ensemble dehazing networks for non-homogeneous haze. In: 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Seattle, WA, USA, pp 1832–1841. https://doi.org/10.1109/CVPRW50498.2020.00233.
Zhang S, Wu Y, Zhao Y, Cheng Z, Ren W (2020) Color-Constrained Dehazing Model. In: 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Seattle, WA, USA, pp 3799–3807. https://doi.org/10.1109/CVPRW50498.2020.00443.
Golts A, Freedman D, Elad M Deep-energy: unsupervised training of deep neural networks. https://arxiv.org/abs/1805.12355
Li B, Gou Y, Gu S, Liu JZ, Zhou JT, Peng X (2020) You only look yourself: Unsupervised and untrained single image dehazing neural network. http://arxiv.org/abs/2006.16829
Metwaly K, Li X, Guo T, Monga V (2020) NonLocal channel attention for nonhomogeneous image dehazing. 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Seattle, WA, USA, pp 1842–1851. https://doi.org/10.1109/CVPRW50498.2020.00234.
Wu H, Liu J, Xie Y, Qu Y, Ma L (2020) Knowledge transfer dehazing network for non-homogeneous dehazing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops, pp 478–479
Tarel J, Hautiere N, Caraffa L, Cord A, Halmaoui H, Gruyer D (2012) Vision enhancement in homogeneous and heterogeneous fog. IEEE Intel Transport Syst Mag 4(2):6–20. https://doi.org/10.1109/MITS.2012.2189969
Fattal R (2014) Dehazing using color-lines. ACM Trans Graph 34(1):13
Ma K, Liu W, Wang Z (2015) Perceptual evaluation of single image dehazing algorithms. In: 2015 IEEE international conference on image processing (ICIP), Quebec City, QC, pp 3600–3604. https://doi.org/10.1109/ICIP.2015.7351475.
Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901. https://doi.org/10.1109/TIP.2015.2456502
Ancuti C, Ancuti CO, De Vleeschouwer C (2016) D-HAZY: a dataset to evaluate quantitatively dehazing algorithms. In: 2016 IEEE international conference on image processing (ICIP), Phoenix, AZ, pp 2226–2230. https://doi.org/10.1109/ICIP.2016.7532754.
Lee Y-H, Tang S-J (2021) A Design of Image Dehazing Engine Using DTE and DAE Techniques. IEEE Trans Circ Syst Video Technol. https://doi.org/10.1109/TCSVT.2020.3034250
Sakaridis C, Dai D, Van Gool L (2017) Semantic foggy scene understanding with synthetic data. arXiv:1708.07819
Zhang Y, Ding L, Sharma G (2017) Hazerd: an outdoor scene dataset and benchmark for single image dehazing. In: 2017 IEEE international conference on image processing (ICIP). IEEE, pp 3205–3209
Ancuti CO, Ancuti C, Timofte R, De Vleeschouwer C (2018) I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images. ArXiv e-prints
Ancuti CO, Ancuti C, Timofte R, De Vleeschouwer C (2018) O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Salt Lake City, UT, pp 867–8678. https://doi.org/10.1109/CVPRW.2018.00119.
Ancuti CO, Ancuti C, Sbert M, Timofte R (2019) Dense haze: a benchmark for image dehazing with dense-haze and haze-free images. In: IEEE international conference on image processing (ICIP)
Li B et al (2019) Benchmarking single-image dehazing and beyond. IEEE Trans Image Process 28(1):492–505. https://doi.org/10.1109/TIP.2018.2867951
Ancuti CO, Ancuti C, Timofte R (2020) NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and haze-free images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp 444–445
Borkar K, Mukherjee S (2020) Single image dehazing by approximating and eliminating the additional airlight component. Neurocomputing 400:294–308
Hautiere N, Tarel JP, Aubert D, Dumont E (2008) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereol J 27(2):87–95
Zhan Y, Zhang R (2017) No-reference JPEG image quality assessment based on blockiness and luminance change. IEEE Signal Process Lett 24(6):760–764. https://doi.org/10.1109/LSP.2017.2688371
Crete-Roffet F, Dolmiere T, Ladret P, Nicolas M (2007) The blur effect: perception and estimation with a new no-reference perceptual blur metric. In: SPIE
Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21(8):3339–3352. https://doi.org/10.1109/TIP.2012.2191563
Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708
Mittal A, Soundararajan R, Bovik AC (2013) Making a “completely blind” image quality analyzer. IEEE Signal Process Lett 20(3):209–212. https://doi.org/10.1109/LSP.2012.2227726
Min X, Zhai G, Gu K, Yang X, Guan X (2019) Objective quality evaluation of dehazed images. IEEE Trans Intell Transport Syst 20(8):2879–2892. https://doi.org/10.1109/TITS.2018.2868771
Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2018) The unreasonable effectiveness of deep features as a perceptual metric. In: Proc CVPR
Luan Z, Shang Y, Zhou X, Shao Z, Guo G, Liu X (2017) Fast single image dehazing based on a regression model. Neurocomputing 245:10–22
Wang Z, Bovik AC (2006) Modern image quality assessment. Synth Lect Image Video Multimedia Process. https://doi.org/10.2200/S00010ED1V01Y200508IVM003
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612
Sharma G, Wu W, Dalal E (2005) The ciede2000 color difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res Appl. https://doi.org/10.1002/col.20070
Westland S, Ripamonti C, Cheung V (2005) Computational colour science using matlab, 2nd edn. Wiley, New York
Shi L et al (Sept. 2018) Removing haze particles from single image via exponential inference with support vector data description. IEEE Trans Multimedia 20(9):2503–2512. https://doi.org/10.1109/TMM.2018.2807593
Sharma P, Jain P, Sur A (2020) Scale-aware conditional generative adversarial network for image dehazing. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision (WACV), pp 2355–2365
https://timesofindia.indiatimes.com/india/over-10000-lives-lost-in-fog-related-road-crashes/articleshow/67391588.cms
Santra S, Mondal R, Chanda B (2018) Learning a patch quality comparator for single image dehazing. IEEE Trans Image Process 27(9):4598–4607. https://doi.org/10.1109/TIP.2018.2841198
Yang D, Sun J (2018) Proximal dehaze-net: a prior learning-based deep network for single image dehazing. In: ECCV, pp 702–717
Deng Z, Zhu L, Hu X, Fu C-W, Xu X, Zhang Q, Qin J, Heng P-A (2019) Deep multi-model fusion for single-image dehazing. In: Proceedings of the IEEE/CVF international conference on computer vision (ICCV), pp 2453–2462
Bianco S, Celona L, Piccoli F, Schettini R (2019) High-resolution single image dehazing using encoder-decoder architecture. In: 2019 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Long Beach, CA, USA, pp 1927–1935. https://doi.org/10.1109/CVPRW.2019.00244.
Agrawal SC, Jalal AS (2022) Dense haze removal by nonlinear transformation. IEEE Trans Circuits Syst Video Technol 32(2):593–607. https://doi.org/10.1109/TCSVT.2021.3068625
Zhang B, Zhao J (2017) Hardware implementation for real-time haze removal”. IEEE Trans Very Large Scale Integr Syst 25(3):1188–1192
Shiau Y-H, Kuo Y-T, Chen P-Y, Hsu F-Y (2019) VLSI design of an efficient flicker-free video defogging method for real-time applications. IEEE Trans Circuits Syst Video Technol 29(1):238–251
Kumar R, Balasubramanian R, Kaushik BK (2020) Efficient method and architecture for real-time video defogging. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2020.2993906
Salazar-Colores S, Cruz-Aceves I, Ramos-Arreguin J (2018) Single image dehazing using a multilayer perceptron. J Electron Imaging. https://doi.org/10.1117/1.JEI.27.4.043022
Zhu Y, Tang G, Zhang X, Jiang J, Tian Q (2018) Haze removal method for natural restoration of images with sky. Neurocomputing 275:499–510
Ju M, Ding C, Ren W, Yang Y, Zhang D, Guo YJ (2021) IDE: image dehazing and exposure using an enhanced atmospheric scattering model. IEEE Trans Image Process 30:2180–2192. https://doi.org/10.1109/TIP.2021.3050643
Sahu G, Seal A, Krejcar O, Yazidi A (2021) Single image dehazing using a new color channel. J Visual Commun Image Represent 74:103008
Ju M, Ding C, Guo YJ, Zhang D (2020) IDGCP: image dehazing based on gamma correction prior. IEEE Trans Image Process 29:3104–3118. https://doi.org/10.1109/TIP.2019.2957852
Morales P, Klinghoffer T, Lee SJ (2019) Feature forwarding for efficient single image dehazing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops
Zheng X, et al. (2018) Strong baseline for single image dehazing with deep features and instance normalization. In: BMVC
Yang A, Wang H, Ji Z, Pang Y, Shao L (2019) Dual-path in dual-path network for single image dehazing. In: Proceedings of the twenty-eighth international joint conference on artificial intelligence main track, pp 4627–4634. https://doi.org/10.24963/ijcai.2019/643
Zhang H, Patel VM (2018) Densely connected pyramid dehazing network. In: CVPR, pp 3194–3203
Galdran A, Vazquez-Corral J, Pardo D, Bertalmío M (2017) Fusion-based variational image dehazing. IEEE Signal Process Lett 24(2):151–155. https://doi.org/10.1109/LSP.2016.2643168
Zheng M, Qi G, Zhu Z, Li Y, Wei H, Liu Y (2020) Image dehazing by an artificial image fusion method based on adaptive structure decomposition. IEEE Sens J 20(14):8062–8072. https://doi.org/10.1109/JSEN.2020.2981719
Gao Y, Su Y, Li Q, Li H, Li J (2020) Single image dehazing via self-constructing image fusion. Signal Process 167:107284
Wang B, Wei B, Kang Z et al (2020) Fast color balance and multi-path fusion for sandstorm image enhancement. SIViP. https://doi.org/10.1007/s11760-020-01786-1
Huo F, Zhu X, Zeng H, Liu Q, Qiu J (2021) Fast fusion-based dehazing with histogram modification and improved atmospheric illumination prior. IEEE Sens J 21(4):5259–5270. https://doi.org/10.1109/JSEN.2020.3033713
Hong S, Kim M, Kang MG (2021) Single image dehazing via atmospheric scattering model-based image fusion. Signal Process 178:107798
Wang R, Li R, Sun H (2016) Haze removal based on multiple scattering model with superpixel algorithm. Signal Process 127:24–36
Jiang Y, Sun C, Zhao Y, Yang L (2017) Image dehazing using adaptive bi-channel priors on superpixels. Comput Vis Image Understand 165:17–32
Yang M, Liu J, Li Z (2018) Superpixel-based single nighttime image haze removal. IEEE Trans Multimedia 20(11):3008–3018. https://doi.org/10.1109/TMM.2018.2820327
Wang P, Fan Q, Zhang Y, Bao F, Zhang C (2019) A novel dehazing method for color fidelity and contrast enhancement on mobile devices. IEEE Trans Consum Electron 65(1):47–56. https://doi.org/10.1109/TCE.2018.2884794
Hassan H, Bashir AK, Ahmad M et al (2020) Real-time image dehazing by superpixels segmentation and guidance filter. J Real-Time Image Proc. https://doi.org/10.1007/s11554-020-00953-4
Wang LZSWX (2021) Single image dehazing based on bright channel prior model and saliency analysis strategy. IET Image Proc 15(3):1023–1031
Tan Y, Wang G (2020) Image haze removal based on superpixels and Markov random field. IEEE Access 8:60728–60736. https://doi.org/10.1109/ACCESS.2020.2982910
Yuan F, Huang H (2018) Image haze removal via reference retrieval and scene prior. IEEE Trans Image Process 27(9):4395–4409. https://doi.org/10.1109/TIP.2018.2837900
Mandal S, Rajagopalan AN (2020) Local proximity for enhanced visibility in haze. IEEE Trans Image Process 29:2478–2491
Reda M, Zhao Y, Chan JC-W (2017) polarization guided autoregressive model for depth recovery. IEEE Photon J 9(3):1–16
Haofeng Hu, Zhao L, Li X, Wang H, Yang J, Li K, Liu T (2018) Polarimetric image recovery in turbid media employing circularly polarized light. Opt Express 26:25047–25059
Li X et al (2019) Pseudo-polarimetric method for dense haze removal. IEEE Photon J 11(1):1–11. https://doi.org/10.1109/JPHOT.2018.2890771
Tian Y, Liu B, Su X, Wang L, Li K (2019) Underwater imaging based on LF and polarization. IEEE Photon J 11(1):1–9. https://doi.org/10.1109/JPHOT.2018.2890286
Liang Z, Ding X, Mi Z, Wang Y, Fu X (2022) Effective polarization-based image dehazing with regularization constraint”. IEEE Geosci Remote Sens Lett. https://doi.org/10.1109/LGRS.2020.3023805
Zhang L, Yin Z, Zhao K, Tian H (2020) Lane detection in dense fog using a polarimetric dehazing method. Appl Opt 59:5702–5707
Kim SE, Park TH, Eom IK (2020) Fast single image dehazing using saturation based transmission map estimation. IEEE Trans Image Process 29:1985–1998. https://doi.org/10.1109/TIP.2019.2948279
Lu Z, Long B, Yang S (2020) Saturation based iterative approach for single image dehazing. IEEE Signal Process Lett 27:665–669. https://doi.org/10.1109/LSP.2020.2985570
Gao Y, Hu H, Li B, Guo Q, Pu S (2019) Detail preserved single image dehazing algorithm based on airlight refinement. IEEE Trans Multimedia 21(2):351–362. https://doi.org/10.1109/TMM.2018.2856095
Wang A, Wang W, Liu J, Gu N (2019) AIPNet: image-to-image single image dehazing with atmospheric illumination prior. IEEE Trans Image Process 28(1):381–393. https://doi.org/10.1109/TIP.2018.2868567
Hu H, Zhang H, Zhao Z, Li B, Zheng J (2020) Adaptive single image dehazing using joint local-global illumination adjustment. IEEE Trans Multimedia 22(6):1485–1495. https://doi.org/10.1109/TMM.2019.2944260
Dhara SK, Roy M, Sen D, Biswas PK (2021) Color cast dependent image dehazing via adaptive airlight refinement and non-linear color balancing. IEEE Trans Circ Syst Video Technol. https://doi.org/10.1109/TCSVT.2020.3007850
Lee Y, Wu B (2019) Algorithm and architecture design of a hardware-efficient image dehazing engine. IEEE Trans Circuits Syst Video Technol 29(7):2146–2161. https://doi.org/10.1109/TCSVT.2018.2862906
Kumar R, Kaushik BK, Balasubramanian R (2019) Multispectral transmission map fusion method and architecture for image dehazing. IEEE Trans Very Large-Scale Integr Syst 27(11):2693–2697
Soma P, Jatoth RK (2020) Implementation of a novel, fast and efficient image de-hazing algorithm on embedded hardware platforms. Circuits Syst Signal Process. https://doi.org/10.1007/s00034-020-01517-4
Wu X, Wang K, Li Y, Liu K, Huang B (2021) Accelerating haze removal algorithm using CUDA. Remote Sens 13(1):85. https://doi.org/10.3390/rs13010085
Xie CH, Qiao WW, Liu Z et al (2017) Single image dehazing using kernel regression model and dark channel prior. SIViP 11:705–712. https://doi.org/10.1007/s11760-016-1013-3
Chen B, Huang S, Li C, Kuo S (2018) Haze removal using radial basis function networks for visibility restoration applications. IEEE Trans Neural Netw Learn Syst 29(8):3828–3838. https://doi.org/10.1109/TNNLS.2017.2741975
Kang C, Kim G (2018) Single image haze removal method using conditional random fields. IEEE Signal Process Lett 25(6):818–822. https://doi.org/10.1109/LSP.2018.2827882
Yin JL, Huang YC, Chen BH, Ye SZ (2020) Color transferred convolutional neural networks for image dehazing. IEEE Trans Circuits Syst Video Technol 30(11):3957–3967. https://doi.org/10.1109/TCSVT.2019.2917315
Chaitanya BSNV, Mukherjee S (2021) Single image dehazing using improved cycleGAN. J Visual Commun Image Represent 74:103014
Li Y, Liu Y, Yan Q, Zhang K (2021) Deep dehazing network with latent ensembling architecture and adversarial learning. IEEE Trans Image Process 30:1354–1368. https://doi.org/10.1109/TIP.2020.3044208
Sun Z, Zhang Y, Bao F, Shao K, Liu X, Zhang C (2021) ICycleGAN: Single image dehazing based on iterative dehazing model and CycleGAN. Comput Vis Image Understand 203:1031332
. Huang L, Yin J, Chen B, Ye S (2019) Towards unsupervised single image dehazing with deep learning. In: 2019 IEEE international conference on image processing (ICIP), Taipei, Taiwan, pp 2741–2745. https://doi.org/10.1109/ICIP.2019.8803316.
Liu R, Ma L, Wang Y, Zhang L (2019) Learning converged propagations with deep prior ensemble for image enhancement. IEEE Trans Image Process 28(3):1528–1543. https://doi.org/10.1109/TIP.2018.2875568
Das SD, Dutta S (2020) Fast deep multi-patch hierarchical network for nonhomogeneous image dehazing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops, pp 482–483
Mehta A, Sinha H, Mandal M, Narang P (2021) Domain-aware unsupervised hyperspectral reconstruction for aerial image dehazing. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision (WACV), pp 413–422
Mehta A, Sinha H, Narang P, Murari (2020) HIDEGAN: a hyperspectral-guided image Dehazing GAN Mandal. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops, pp 212–213
Dudhane A, Murala S (2020) RYF-net: deep fusion network for single image haze removal. IEEE Trans Image Process 29:628–640. https://doi.org/10.1109/TIP.2019.2934360