A Comparison of Imputation Methods for Bayesian Factor Analysis Models

Journal of Educational and Behavioral Statistics - Tập 36 Số 2 - Trang 257-276 - 2011
Edgar C. Merkle1
1Wichita State University

Tóm tắt

Imputation methods are popular for the handling of missing data in psychology. The methods generally consist of predicting missing data based on observed data, yielding a complete data set that is amiable to standard statistical analyses. In the context of Bayesian factor analysis, this article compares imputation under an unrestricted multivariate normal model (Multiple Imputation [MI]) to imputation under the statistical model of interest (Data Augmentation [DA]). The former method is popular in applied research, but the latter method is more straightforward from a Bayesian perspective. Simulations demonstrate that DA yields less-biased parameter estimates for moderate sample sizes and high missingness proportions. MI, however, yields less-biased parameter estimates for large sample sizes with misspecified models. The incorporation of auxiliary variables in DA is also addressed, and BUGS code is provided.

Từ khóa


Tài liệu tham khảo

Aitkin M., 2005, Contemporary psychometrics: A festschrift for Roderick P. McDonald, 207

Casella G., 1992, The American Statistician, 46, 167, 10.1080/00031305.1992.10475878

10.1037/1082-989X.6.4.330

10.1080/01621459.1990.10476213

10.1214/ss/1177011136

10.1207/S15328007SEM1001_4

Holzinger K. J., 1939, A study of factor analysis: The stability of a bi-factor solution (No. 48)

Jennrich R. I., 2006, Presented at the 71st annual meeting of the Psychometric Society

10.3102/10769986028003195

10.1093/biomet/91.3.559

10.1037/1082-989X.10.1.84

10.1002/9780470024737

Little R. J. A., 1987, Statistical analysis with missing data

10.1002/9781119013563

10.1023/A:1008929526011

10.1037/1082-989X.4.1.84

10.1214/ss/1177010269

10.1093/biomet/63.3.581

10.1002/9780470316696

10.1201/9781439821862

10.1037/1082-989X.7.2.147

10.1007/BF02294318

10.1037/1082-989X.6.4.317

10.18637/jss.v012.i03

10.1080/01621459.1987.10478458

Thomas A., 2006, R News, 6, 12

van Buuren S., Journal of Statistical Software

Wothke W., 2000, Modeling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples

10.1080/10705510802339106