A Cognitive Model of Saliency, Attention, and Picture Scanning

Cognitive Computation - Tập 1 Số 4 - Trang 292-299 - 2009
Vassilis Cutsuridis1
1Univ. of Stirling#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Berman RA, Wurtz RH. Exploring the pulvinar path to visual cortex. Prog Brain Res. 2008;171:467–73.

Carpenter GA, Grossberg S. Adaptive resonance theory. In: Arbib MA, editor. The handbook of brain theory and neural networks. 2nd ed. Cambridge: MIT Press; 2003. p. 87–90.

Chelazzi L, Duncan J, Miller EK, Desimone R. Responses of neurons in the inferior temporal cortex during memory guided visual search. J Neurophysiol. 1998;80(6):2918–40.

Coizet V, Comoli E, Westby GW, Redgrave P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: an electrophysiological investigation in the rat. Eur J Neurosci. 2003;17(1):28–40.

Comoli E, Coizet V, Boyes J, Bolam JP, Canteras NS, Quirk RH, et al. A direct projection from the superior colliculus to substantia nigra for detecting salient visual events. Nat Neurosci. 2003;6(9):974–80.

Cutsuridis V, Kahramanoglou I, Perantonis S, Evdokimidis I, Smyrnis N. A biophysical model of decision making in an antisaccade task through variable climbing activity. In: Duch W, et al., editors. ICANN 2005. LNCS, vol. 3695. Berlin: Springer; 2005. p. 205–10.

Cutsuridis V, Perantonis S. A neural network model of Parkinson’s disease bradykinesia. Neural Netw. 2006;19(4):354–74.

Cutsuridis V. Neural model of dopaminergic control of arm movements in Parkinson’s disease bradykinesia. In: Kollias SD, Stafylopatis A, Duch W, Oja E, editors. ICANN 2006. LNCS, vol. 4131. Heidelberg: Springer; 2006. p. 583–91.

Cutsuridis V. Does reduced spinal reciprocal inhibition lead to co-contraction of antagonist motor units? A modeling study. Int J Neural Syst. 2007;17(4):319–27.

Cutsuridis V, Kahramanoglou I, Smyrnis N, Evdokimidis I, Perantonis S. A neural variable integrator model of decision making in an antisaccade task. Neurocomputing. 2007;70(7–9):1390–402.

Cutsuridis V, Smyrnis N, Evdokimidis I, Perantonis S. A neural network model of decision making in an antisaccade task by the superior colliculus. Neural Netw. 2007;20(6):690–704.

Cutsuridis V. A bio-inspired system architecture of an active visual search model. In: Kurkova V, Neruda R, Koutnik J, editors. ICANN 2008, LNCS vol. 5164. Berlin: Springer; 2008. p. 248–57.

Cutsuridis V. Neural network modeling of voluntary single joint movement organization. I. Normal conditions. In: Chaovalitwongse WA, Pardalos P, Xanthopoulos P, editors. Computational neuroscience. Berlin: Springer-Verlag; 2010.

Cutsuridis V. Neural network modeling of voluntary single joint movement organization. II. Parkinson’s disease. In: Chaovalitwongse WA, Pardalos P, Xanthopoulos P, editors. Computational neuroscience. Berlin: Springer-Verlag; 2010.

Deco G, Schürmann B. A neuro-cognitive visual system for object recognition based on testing of interactive attentional top-down hypotheses. Perception. 2000;29(10):1249–64.

Desimone R, Duncan J. Neural mechanisms of selective visual attention. Ann Rev Neurosci. 1995;18:193–222.

Dommett E, Coizet V, Blaha CD, Martindale J, Lefebre V, Walton N, et al. How visual stimuli activate dopaminergic neurons at short latency. Science. 2005;307(5714):1476–9.

Egner T, Hirsch J. Cognitive control mechanisms resolve conflict through cortical amplification of task relevant information. Nat Neurosci. 2005;8(12):1784–90.

Fazl A, Grossberg S, Mingolla E. View-invariant object category learning, recognition, and search: how spatial and object attention are coordinated using surface-based attentional shrouds. Cogn Psychol. 2009;58(1):1–48.

Findlay JM, Gilchrist ID. Active vision: the psychology of looking and seeing. Oxford: Oxford University Press; 2003.

Foxe JJ, Simpson GV. Flow of activation from V1 to frontal cortex in humans. Exp Brain Res. 2002;142:139–50.

Hamker FH. The re-entry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex and areas V4, IT of attention and eye movement. Cereb Cortex. 2005;15:431–47.

Hanes DP, Wurtz RH. Interaction of frontal eye field and superior colliculus for saccade generation. J Neurophys. 2001;85:804–15.

Henderson JM, Hollingworth A. The role of fixation position in detecting scene changes across saccades. Psychol Sci. 1999;50:243–71.

Hikosaka O, Wurtz RH. Visual and oculomotor functions of monkey substantia nigra pars reticulate. J Neurophys. 1983;49:1230–301.

Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000;80:954–78.

Itti L, Koch C. Computational modelling of visual attention. Nat Neurosci. 2001;2:194–203.

Itti L, Koch C. A saliency based search mechanism for overt and covert shifts of visual attention. Vision Res. 2000;40:1489–506.

Klein RM. Inhibition of return. Trends Cogn Sci. 2000;4(4):138–47.

Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1995;4:219–27.

Kusunoki M, Gottlieb J, Goldberg ME. The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion and task relevance. Vision Res. 2000;40:1459–68.

Lleras A, Von Mühlenen A. Spatial context and top-down strategies in visual search. Spat Vis. 2004;17(4–5):465–82.

McHaffie JG, Jiang H, May PJ, Coizet V, Overton PG, Stein BE, et al. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience. 2006;138(1):221–34.

Mohler CW, Wurtz RH. Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. J Neurophyiol. 1977;40:74–94.

Olshausen BA, Anderson CH, van Essen DC. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci. 1993;13(11):4700–19.

Reynolds JH, Desimone R. The role of neural mechanisms of attention in solving the binding problem. Neuron. 1999;24(1):19–29.

Redgrave P, Gurney K. The short latency dopamine signal: a role in discovering novel actions. Nat Neurosci. 2006;7:967–75.

Redgrave P, Gurney K, Reinolds J. What is reinforced by the phasic dopamine signals? Brain Res Rev. 2008;58(2):322–39.

Rybak IA, Gusakova VI, Golovan AV, Podladchikova LN, Shevtsova NA. A model of attention-guided visual perception and recognition. Vision Res. 1998;38(15–16):2387–400.

Schall JD, Hanes DP, Thompson KG, King DJ. Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation. J Neurosci. 1995;15:6905–18.

Schiller PH, True SD, Conway JL. Deficits in eye movements following frontal eye field and superior colliculus ablations. J Neurophys. 1980;44:1175–89.

Schultz W. Predictive reward signal of dopamine neurons. J Neurophys. 1998;80:1–27.

Sommer MA, Wurtz RH. Frontal eye field neurons orthodromically activated from the superior colliculus. J Neurophys. 1998;80:3331–3.

Tavassoli A, Linde I, Bovik AC, Cormack LK. Eye movements selective for spatial frequency and orientation during active visual search. Vision Res. 2009;49(2):173–81.

Taylor JG, Hartley M, Taylor N, Panchev C, Kasderidis S. A hierarchical attention-based neural network architecture, based on human brain guidance, for perception, conceptualisation, action and reasoning. Image Vis Comput. 2009;27:1641–57.

Thompson KG, Bichot NP. A visual saliency map in the primate frontal eye field. Prog Brain Res. 2005;147:251–62.

Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system. Nature. 1996;381(6582):520–2.

Tsotsos JK, Culhane S, Wai W, Lai Y, Davis N, Nuflo F. Modeling visual attention via selective tuning. Artif Intell. 1995;78(1–2):507–47.

Viviani P. Eye movements in visual search. Cognitive, perceptual and motor control aspects. In: Kowler E, editor. Eye movements and their role in visual and cognitive processes. Amsterdam: Elsevier; 1990. p. 353–93.