A Class of Derivative-Free CG Projection Methods for Nonsmooth Equations with an Application to the LASSO Problem

Mingxuan Sun1, Min Tian2
1School of Mathematics and Statistics, Zaozhuang University, Shandong, 277160, People’s Republic of China
2Department of Physiology, Shandong Coal Mining Health School, Shandong, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zeidler, E.: Nonlinear Functional Analysis and its Applications. Springer, Berlin (1990)

Wood, A.J., Wollenberg, B.F.: Power Generation, Operation, and Control. Wiley, New York (1996)

Meintjes, K., Morgan, A.P.: A methodology for solving chemical equilibrium systems. Appl. Math. Comput. 22, 333–361 (1987)

Xiao, Y.H., Zhu, H.: A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J. Math. Anal. Appl. 405, 310–319 (2013)

Sun, M., Liu, J.: The convergence rate of the proximal alternating direction method of multipliers with indefinite proximal regularization. J. Inequ. Appl. 2017, 19 (2017)

Zhou, B., Duam, G.R., Lin, Z.: A parametric periodic Lyapunov equation with application in semi-global stabilization of discrete-time periodic systems subject to actuator saturation. Automatica 47, 316–325 (2011)

La Cruz, W., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear systems. Optim. Methods Softw. 18, 583–599 (2003)

La Cruz W., Mart$$\grave{\rm i}$$nez J.M., Raydan M.: Spectral residual method without gradient information for solving large- scale nonlinear systems of equations. Math. Comput. 75, 429–1448 (2006)

Zhang, L., Zhou, W.J.: Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl. Math. 196, 478–484 (2006)

Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 1988(8), 141–148 (1988)

Solodov, M.V., Svaiter, B.F.: A globally convergent inexact Newton method for system of monotone equations. In: Fukushima, M., Qi, L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semi- smooth and Smoothing Methods, pp. 355–369. Kluwer Academic Publishers, Dordrecht (1999)

Yu, Z.S., Lin, J., Sun, J., Xiao, Y.H., Liu, L.Y., Li, Z.H.: Spectral gradient projectionmethod formonotone nonlinear equations with convex constraints. Appl. Numer. Math. 59, 2416–2423 (2009)

Yu, G.H., Niu, S.Z., Ma, J.H.: Multivariate spectral gradient projectionmethod for nonlinear monotone equations with convex constraints. J. Ind. Manag. Optim. 9, 117–129 (2013)

Liu, J., Duan, Y.R.: Two spectral gradient projection methods for constrained equations and their linear convergence rate. J. Inequ. Appl. 2015, 8 (2015)

Cheng, W.Y.: A PRP type method for systems of monotone equations. Math. Comput. Model. 50, 15–20 (2009)

Li, Q.N., Li, D.H.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31, 1625–1635 (2011)

Li, D.H., Wang, X.L.: A modified Fletcher–Reeves-type derivative-free method for symmetric nonlinear equations. Numer. Algebra Control Optim. 1(1), 71–82 (2012)

Sun, X.L.: A two-term Fletcher–Reeves conjugate gradient method for monotone constrained equations and its application in compressive sensing. ICIC Express Lett. 9(11), 2987–2992 (2015)

Sun, M., Liu, J.: A modified Hestenes-Stiefel projection method for constrained nonlinear equations and its linear convergence rate. J. Appl. Math. Comput. 49(1–2), 145–156 (2015)

Sun, M., Liu, J.: New hybrid conjugate gradient projection method for the convex constrained equations. Calcolo 53, 399–411 (2016)

Yuan, G.L., Zhang, M.J.: A three-terms Polak-Ribi$$\grave{\rm e}$$re–Polyak conjugate gradient algorithm for large-scale nonlinear equations. J. Comput. Appl. Math. 286, 186–195 (2015)

Dai, Z.F., Chen, X.H., Wen, F.H.: A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270(1), 378–386 (2015)

Liu, J.K., Li, S.J.: Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. J. Ind. Manag. Optim. 13(1), 283–295 (2017)

Ou, Y.G., Li, J.Y.: A new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints. J. Appl. Math. Comput. 56(1–2), 195–216 (2018)

Cheng, W.Y.: A two-term PRP-based descent method. Numer. Funct. Anal. Optim. 28, 1217–1230 (2007)

Sun, M., Bai, Q.G.: A new descent memory gradient method and its global convergence. J. Syst. Sci. Complex. 24(4), 784–794 (2011)

Sun, M., Liu, J.: Three derivative-free projection methods for nonlinear equations with convex constraints. J. Appl. Math. Comput. 47, 265–276 (2015)

Sun, M., Tian, M.Y., Wang, Y.J.: Multi-step discrete-time Zhang neural networks with application to time-varying nonlinear optimization. Discrete Dyn. Nat. Soc. Article ID 4745759, 1–14 (2019)

Feng, D.X., Sun, M., Wang, X.Y.: A family of conjugate gradient methods for large-scale nonlinear equations. J. Inequ. Appl. 2017, 236 (2017)

Zarantonello, E.H.: Projections on Convex Sets in Hilbert Space and Spectral Theory. Academic Press, New York (1971)

Sun, W.Y., Yuan, Y.X.: Optimization Theory and Methods: Nonlinear Programming. Springer Optimization and Its Applications, vol. 1. Springer, New York (2006)

Zhang, L., Zhou, W.J., Li, D.H.: A descent modified Polak–Ribi$$\grave{\rm e}$$re–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006)

Zhang, L., Zhou, W.J., Li, D.H.: Global convergence of a modified Fletcher–Reeves conjugate method with Armijo-type line search. Numerische Mathematik 104, 561–572 (2006)

Solodov, M.V., Svaiter, B.F.: A globally convergent inexact Newton method for systems of monotone equations. In: Fukushima, M., Qi, L. (eds.) Reformulation: Nonsmooth, Semismooth and Smoothing Methods, Piecewise smooth, pp. 335–369. Kluwer Academic Publishers, Dordrecht (1998)

Polyak B.T.: Introduction to Optimization. Optimization Software Inc., Publications Division, New York (1987) (Translated from Russian, with a foreword by Dimitri P. Bertsekas)

Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B Stat. Methodol. 58, 267–288 (1996)

Wu, L., Sun, Z.: New nonsmooth equations-based algorithms for $$\ell _1$$-norm minimization and applications. J. Appl. Math. 139609, 1–14 (2012)

Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction, application to compressed sensing and other inverse problems. IEEE J. Select. Topics Signal Process. 1(4), 586–597 (2007)