A Chemometric Study of the Adsorption of Zr(IV) Ions from Aqueous Solutions onto TBP-Surface-Modified Magnetic Fe3O4 Nanoparticles as a New Adsorbent

Radiochemistry - Tập 62 - Trang 62-72 - 2020
A. R. Behnam-Saba1, K. Saberyan2, A. Nezhadali1, H. Adelkhani1
1Department of Chemistry, Payame Noor University, Tehran, Iran
2Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

Tóm tắt

Chemometric experimental design methods were used to optimize the adsorption of Zr(IV) ions from an aqueous solution. Tributyl phosphate functionalized magnetic nanoparticles (TBPFMNPs) were used as a novel adsorbent for the adsorption of Zr(IV) ions. The effect exerted on the adsorption process by the adsorbent amount (mg), TBP/MNP ratio (w/w, %), and concentration of Zr(IV) in aqueous solutions (mg/L) was studied. Two-level factorial design was used, with the other parameters kept constant in the batch experiments. The initial Zr concentration was varied from 3.5 to 70 ppm with 9 mg of the adsorbent. The maximum uptake, 93%, was reached at the initial zirconium concentration of 35 ppm. The maximum distribution coefficient under these conditions reached 15140 mL/g.

Tài liệu tham khảo

Wang, L.Y., Lee, H.Y., and Lee, M.S., Mater. Trans., 2013, vol. 54, no. 8, pp. 1460–1466. Phatemi, S., Khanchi, A., and Kalantari, M., J. Techn. Fac. Tehran Univ., 2008, vol. 40, pp. 147–155. Nunez, L. and Kaminski, M., J. Magn. Magn. Mater., 1999, vol. 194, pp. 102–107. Nunez, L., Kaminski, M., Bradley, C., Buchholz, B., Landsberger, S., Aase, S., Tuazon, H., and Vandegrife, G., Magnetically Assisted Chemical Separation (MACS): Preparation and Optimization of Particles for Removal of Transuranic Elements: Report, Illinois: Argonne National Laboratory, 1995, no. 95/1, 60439. Zheng, X., He, L., Duan, Y., Jiang, X., Xiang, G., Zhao, W., and Zhang, S., J. Chromatogr. A, 2014, vol. 1358, pp. 39–45. Nunez, L. and Bunchholz, B.A, Argonne National Laboratory Report, Argonne, Illinois, 1999, no. ANL-94/95. Kaminski, M.D. and Nunez, L., J. Magn. Magn. Mater., 1999, vol. 194, pp. 31–36. Bahrami, M., Boroomandnasab, S., and Kashkooli, A., Water Wastewater, J., 2012, vol. 3, pp. 54–60. Parham, H., Zargar, B., and Siralipour, R., J. Hazard. Mater., 2012, vols. 205–206, pp. 94–100. Xu, P., Zeng, G., Huang, D., Hu, S., Feng, C., Lai, C., Chao, M., Huang, C., Li, N., Wei, Z., and Xie, G., Colloids Surf. A: Physicochem. Eng. Aspects, 2013, vol. 419, pp. 147–155. Koshhesab, Z., Zolghadr, F., and Mirrahimi, M., J. Adv. Chem., 2014, vol. 6, no. 2, pp. 990–998. Rahnama, R. and Eram, S., Iran. J. Anal. Chem., 2014, vol. 1, pp. 106–114. Riahi, F., Bagherzadeh, M., and Hadizadeh, Z., RSC Adv., 2015, vol. 5, pp. 72058–72068. Wu, Y.-W., Zhang, J., Liu, J.-F., Chen, L., Deng, Z.-L., Han, M.-Z., Wei, X.-S., Yu, A.-M., and Zhang, H.-L., Appl. Surf. Sci., 2012, vol. 258, pp. 6772–6776. Zhao, L., Wu, R., Han, G., Zhou, H., Ren, L., Tian, R., and Zou, H., J. Am. Soc. Mass Spectrom., 2008, vol. 19, no. 8, p. 1176–1186. https://doi.org/10.1016/j.jasms.2008.04.027 Batalha, I. and Roque, A., Meth. Mol. Biol., 2016, pp. 193–209. https://doi.org/10.1007/978-1-4939-3049-4-13 Mansori, N., Noaparast, M., and Saberyan, K., J. Adv. Chem., 2014, vol. 10, no. 3, pp. 2403–2413. Jorjani, E. and Shahbazi, M., Arab. J. Chem., 2016, vol. 9, pp. 1532–1539. Amaral, J. and Morais, C., World J. Eng. Technol., 2016, vol. 4, pp. 138–150. https://doi.org/10.4236/wjet.2016.43D017. Grize, Y.L., J. Chemom., 1995, vol. 9, pp. 239–262. Kalil, S.J., Maugeri, F., and Rodrigues, M.I., Process Biochem., 2000, vol. 35, pp. 539–550. Gheshlaghi, R., Scharer, J.M., Moo-young, M., and Douglas, P.L., Anal. Biochem., 2008, vol. 383, pp. 93–102. Shahira, K.V., Int. J. Eng. Sci., 2013, vol. 2, no. 7, pp. 123–146. Sadeghi, S., Azhdari, H., Arabi, H., and Moghaddam, A., J. Hazard. Mater., 2012, vols. 215–216, pp. 208–216. Khajeh, M., Bohlooli, M., and Ghaffari, M., J. Nanotechnol. Med. Sci. Univ. Zabol, 2016, no. 1, pp. 1–11. Schoenmakers, P.J., Bartha, A., and Billiet, H., J. Chromatogr., 1991, vol. 550, pp. 425–447. https://doi.org/10.1016/s0021-9673(01)88554-X Massart, D.L., Vandeginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J., and Smeyers-Verbeke, J., Handbook of Chemometrics and Qualimetrics, Oxford: Elsevier, 1997, part A. https://doi.org/10.1021/ci980427d Mahadeva, S., Gnanaprakash, G., Philip, J., Rao, B.P.C., and Jayakumar, T., Physica E, 2007, vol. 39, no. 1, pp. 20–25. https://doi.org/10.1016/J.Physe.2006.12.041 Atkinson, A.C. and Donev, A.N., Optimum Experimental Design, Oxford: Clarendon, 1994. Box, C.E., Hunter, W.G., and Hunter, J.S., Statistics for Experimenters and an Introduction to Design, Data Analysis, and Model Building, New York: Wiley, 1978. Snee, D., Technometrics, 1977, vol. 19, pp. 415–428. https://doi.org/10.1080/004101706.1977.10489587 Eline, C.B., Palhares, G., and Ladeira, A., in Int. Nuclear Atlantic Conf. INAC2013, Brazil, 2013.