A Chemical Potential Probe to Determine the Solubility of Hydrogen in Metals: An Example with Copper

J. L. Corrigall1, C. St Louis1, C. E. Coleman1, G. A. McRae1
1Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada

Tóm tắt

A probe has been developed to determine the solubility of hydrogen in metals. The method is based on mass balance and high-pressure hydrogen produced in situ partitioning between a zirconium probe and the metal. As an example, the solubility of hydrogen in copper, SH in Cu, has been determined between 350 and 450 °C: $$ S_{\text{H\,in\,Cu}} = (1000 \pm 200)\exp \left( { - \frac{43000 \pm 1300}{RT}} \right){\text{ [mol H}}_{2} /{\text{m}}^{3} \sqrt {\text{MPa}} ]. $$ This solubility agrees with permeation and diffusivity measurements spanning 10 and 6 orders of magnitude, respectively.

Từ khóa


Tài liệu tham khảo

W. Eichenauer and A. Pebler, Messung des diffusionskoeffizienten und der löslichkeit von wasserstoff in aluminium und kupfer, Z. Metallk., 1957, 48, p 373-378 (in German) R.B. McLellan, Solid Solutions of Hydrogen in Gold, Silver and Copper, J. Phys. Chem. Solids, 1973, 34, p 1137-1141 A.K. Sverchkova, L.A. Andreev, and Y.A. Minaev, Effect of Crystal Structure on the Solubility of Hydrogen in Copper, Met. Sci. Heat Treat., 1989, 31, p 833-836 P. Röntgen and F. Möller, The Solubility of Gases in Copper and Aluminum, Metallwirtschaft, 1934, 13, p 81-83 K.H. Lieser and H. Witte, Löslichkeit von Wasserstoff in Legierungen IV. Diskussion der Ergebnisse, Z. Phys. Chem., 1954, 202, p 321-351 (in German) C.L. Thomas, Solubility of Hydrogen in Solid Copper, Silver, and Gold Obtained by a Rapid Quench and Extraction Technique, Trans. Am. Inst. Min. Metall. Pet. Eng., 1967, 239, p 485-496 H. Magnusson and K. Frisk, Diffusion, Permeation and Solubility of Hydrogen in Copper, J. Phase Equilib. Diffus., 2017, 38, p 65-69 T. Ishikawa and R.B. McLellan, The Diffusivity of Hydrogen in Copper at Low Temperatures, J. Phys. Chem. Solids, 1985, 46, p 445-447 W. Eichenauer, W. Löser, and H. Witte, Löslichkeit und diffusiongeschwindigkeit von wasserstoff und deuterium in einkristallen aus nickel und kupfer, Z. Metallk., 1965, 56, p 287-293 (in German) L. Katz, M. Guinan, and R.J. Borg, Diffusion of H2, D2, and T2 in Single-Crystal Ni and Cu, Phys. Rev. B, 1971, 4, p 330-341 W.G. Perkins and D.R. Begeal, Permeation and Diffusion of Hydrogen in Ceramvar, Copper and Ceramvar–Copper Laminates, Ber. Bunsenges. Ph. Chem., 1972, 76, p 863 Y. Sakamoto and K. Takao, The Electrochemical Determination of Diffusivity and Solubility of Hydrogen in Copper, J. Jpn. Inst. Met., 1982, 46, p 285-290 G.R. Caskey, A.H. Dexter, M.L. Holzworth, M.R. Louthan, and R.G. Derrick, The Effect of Oxygen on Hydrogen Transport in Copper, Corrosion, 1976, 32, p 370-374 H. Horinouchi, M. Shinohara, T. Otsuka, K. Hashizume, and T. Tanabe, Determination of Hydrogen Diffusion and Permeation Coefficients in Pure Copper at Near Room Temperature by Means of Tritium Tracer Techniques, J. Alloys Compd., 2013, 580, p S73-S75 J.K. Gorman and W.R. Nardella, Hydrogen Permeation Through Metals, Vacuum, 1962, 12, p 19-24 A. Sieverts, The Absorption of Gasses by Metals, Zeitschrift fur Metalkunde, 1929, 21, p 37-46 A. McMinn, E.C. Darby and J.S. Schofield, The Terminal Solid Solubility of Hydrogen in Zirconium Alloys in Zirconium in the Nuclear Industry, Twelfth International Symposium, West Conshohocken, Pennsylvania, USA, 2000 G.A. Bickel, L.W. Green, M.W.D. James, T.G. Lamarche, P.K. Leeson, and H. Michel, The Determination of Hydrogen and Deuterium in Zre2.5Nb Material by Hot Vacuum Extraction Mass Spectrometry, J. Nucl. Mater., 2002, 306, p 21-29 H.R. Shaw and D.R. Wones, Fugacity Coefficients for Hydrogen Gas Between 0 °C and 1000 °C, for Pressures to 3000 atm, Am. J. Sci., 1964, 262(7), p 918-929 C. San Marchi, Technical Reference on Hydrogen Compatibility of Materials, Copper Alloys: Pure Copper (code 4001), Sandia National Laboratories, May 1, 2006. http://www.ca.sandia.gov/matlsTechRef/ H. Magnusson and K. Frisk, Thermodynamic Evaluation of the Copper-Rich Part of the Cu–H–O–S–P System at Low Temperatures, CALPHAD, 2014, 47, p 148-160